大数据分析的10个实用窍门!
如果你的公司正着手开启你的大数据分析之旅,不要烦恼:你不是一个人,这条船上大有人在。但是你需要加倍努力才能赶上数据分析的领头羊们。这篇文章是从行业大会的讨论中总结出来的十个小窍门。
1避免华而不实
现在企业可以从传感器、智能手机中获取比以前多得多的数据,但相应的做出成果的压力也就更大了。陷入热潮特别是一些闪亮的新技术宣传热潮是很容易的。但是靠大数据技术真正获得成功却不是易事,仅仅掌握某项技能是不足以让成功一蹴而就的。今天的大数据领导者们已经在数据分析行业工作长达十年甚至更久,他们有成功的基础。
2不要盲目崇拜数据
据说数据已成为一种新“货币”并展现了自身价值。这样说可能有点夸大其词。数据公司应该只收集其需要的数据来解决业务问题即可,而不是像一头贪婪嗜财的巨龙一样大量囤积数据。
麦肯锡消费市场分析中心的首席营运官Matt Ariker说“数据本身能够成为一种竞争优势,当然你也可能让分析毫无意义。我已经老了,我在宝洁公司开始分析师生涯。那时我们会花费12周来分析两周的促销活动。你真的很需要思考这样几个问题:那些高质量的问题究竟是什么意思,你该如何来整合结构化和非结构化数据以及整理总结你的流程化分析问题的方法。否则你将一无所获。
3首先考虑商业案例
一些公司在数据分析之初,会收集所有能到手的数据,然后全部放入自己的数据池中,妄想可以有一种有魔力的算法让自己一键获得业务解决方案。但是他们往往难以有所收获。
Bodkin说“人们往往有这样的误解:数据科学家们的工作就是在周一到办公室之后说‘我又可以无所限制地做些什么有趣的事呢?’而据我所知,没有什么公司会拿出巨额预算进行无限制的数据探索。(他们会参考一些已有商业案例)”
4形成数据分析文化
你可以在最纯净的数据集上用最优秀的算法来创造出惊艳的结论,但那毫无意义,除非你的业务伙伴相信你所做的数据分析具有价值,并且相信那些数据和结论。这需要你建立一种数据分析文化。
Teradata实验室主席Oliver Ratzenberger说:“如果你分析那些领先的数据分析竞争者们就会发现,他们花费了过去的10到15年时间来形成自己的数据分析文化。有些公司曾说过自己将在接下来的90年里完成在数据分析项目上从‘爬行’到‘疾跑’的蜕变。这和技术无关,这是在说他们数据分析文化的形成。”
5快速失败积累出最终的成功
数据科学是一个往复循环的过程。在你成功把数据变成有价值的结论并实施他们之前,你总会经历各种各样的失败。最近的许多大数据领域的突破性进展,例如Apache Spark都是专注于加速这个过程。
但是大数据从业者不应该为了失败而失败,故意陷入这个失败尝试的循环过程。麦肯锡的Ariker说:“你可以进行多项测试,失败的现实仅仅预示着你会更快的失败。你所有的灵活的数据分析过程都是基于公司支持和假设驱动的。你的失败是为了改进数据分析过程并获得更好的结论,而不是不顾结果地去享受数据分析的过程。
6保证最高管理层在数据分析的一环
和管理层分享你的数据分析的成果是必要的,不仅是为了确保他们不会插手你以后的数据分析项目,也是为了保证你在分析管理层关注的问题 。
宝洁公司领导人,商业智能和数据分析领导者David Dittmann在最近的CAO峰会上说:“我们学到的一点是,你必须一直给管理层展现数据价值。而如果你一直缺席管理层的业务讨论会,我想你的工作会出现方向性的根本错误。”
7管理很无聊却是必要的
没有什么比一场有关数据分析进程和改变管理方式的讨论更让人犯困了。但是在这样一个快节奏的大数据时代,处理好所有部分不仅仅是细节问题,它更是长期成功的基石。
能够在30天里对一件事保持敏锐是很重要的。Teradata的Ratzenberger说:“但是你需要有能够这么做的基础。包括产品系列,错误处理和版本控制的集成管理是必要的。有些部分在开始的30或90天里是起作用的,但是你还需要保持其在随后依然有效。你有一副好牌在手,就需要你好好把握,一旦你出错一张,随之而来的可能就是满盘皆输。”
8保持全程思考
你可能有一个最好的预测模型。但是,除非它可以在现实世界中有效并且有较好的效益,否则它将毫无价值,只是对公司时间和资源的浪费。
麦肯锡的Ariker说:“如果你跑去对经理说‘好消息,我们的大数据平台可以生产很多数据产品,但是我需要再雇1500个人’,那估计你第二天得找份新工作了。你必须一直思考流程化数据处理和效益的平衡,并确保你在研究一个高质量问题的同时考虑好答案。”
9积少成多
在大数据领域,一气呵成地处理所有问题听上去是异常诱人的。你想要依据众多变量来建模解决业务问题,所以你去收集了有关各个业务的众多数据,然而你的算法却在剔除合适的结论。想法是美好的,结果却不尽如人意。
肯尼索州立大学的应用统计和数据科学教授Jennifer Lewis Priestley讲了一个故事:有个数学专业的学生建立了一个极好而又极差的模型,这个模型有非常高的准确率,但是产生了2500个预测器。“这毫无意义。你不可能去操作2500个预测器。所以我让那个学生去筛选出四个我可以实际使用的预测器”她在2015SAS数据分析大会上说。
10不要去猎取“独角兽”
精通统计学、科技和商业的数据科学家们被称作“独角兽”,因为他们是如此的稀有(事实上并不存在独角兽,因为他们是神话生物,但那是另外的故事了)。
尽管这样的数据科学家确实存在,但这不值得你浪费时间去挖他们来你的公司。ThinkBig的Bodkin说:“我所有的客户都在尝试着挖人。但是你无法从一个人身上就得到想要的价值,你只能从一个团队——一个高效的数据科学团队得到你想要的数据分析结果。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27