数据分析师不是单纯做数学题 不懂商业就别谈数据
前一段日子见到一位数据发烧友,我们两个有一个一致的观点:电子商务发展速度越来越快,这个行业的趋势变化也越来越快。对于电子商务公司老板来说,想要自己永远跟着趋势走,学会数据驱动是必然的了。
庆幸的是,今年搞电子商务的人对数据分析开始重视起来了,就连夫妻店起来的淘宝卖家也开始招数据分析师,更别谈一些再大些的电子商务公司。
但是,这让我心存隐忧:现在不是缺数据,而是数据太多。据统计,在今天的互联网上,每60秒会产生10万个微薄信息、400万次search、facebook上50万次contact。我相信,今天稍大一些的电子商务公司,都会采集一些行为数据(比如点击量),但是这些行为数据与商业数据(比如交易量)有什么关系?今天绝多数公司,甚至包括凡客这样的著名电子商务公司,都不知道怎样利用这成千上万的零散数据。
需要数据逻辑,更需要商业敏感
先讲一个有趣的故事。有一天,linkin发现忽然发现雷曼兄弟的来访者多起来了,但是并没有深究原因,第二天雷曼兄弟就宣布倒闭了。原因是什么?雷曼兄弟的人到linkin来找工作了。谷歌宣布退出中国的前一个月,我在linkedin发现了一些平时很少见的谷歌的产品经理在线,这也是相同的道理。
试想,如果linkin针对某家上市公司分析某些数据,是不是有商业价值呢?我相信,现在51job绝对不知道要采集这些数据,只盯着注册用户数量这样的简单数据。国内许多互联网公司,拿着鱼翅当萝卜。
说这个故事,只是为了告诉大家,互联网中的数据,需要用商业的眼光去分析,才有价值。
今天电子商务公司的数据分析师,有些像老板的军师,必须有从枯燥的数据中看到解开市场的密码的本事。
比如,当一个具有商业意识的数据分析师发现,网站上的婴儿车的销量增加了,那么他基本可以预测奶粉的销量也会跟着上去。
再比如,和传统卖场一样,网站上的产品起到的作用并不一样,有的产品是为了赚钱,有的产品是为了促销的,有的产品是为了引流量,不同的产品在网站上摆放位置当然是不一样的。
一个商业敏感的数据分析师,是懂得用什么数据驱动公司目标实现的。
比如,乐酷天与淘宝竞争,重点看的不是交易量,而是流量,每天有多少新的seller进来,卖了多少东西。因为此阶段的饿竞争最核心的就是人气,而非实质交易量。如果新来的seller进来卖不出东西,只是老的seller的交易量在增长,即使最后交易量每天都增长,还是有问题。
再比如,一家刚踏入市场的B2C和已经占领大部分市场的B2C,他们的公司目标是不一样的,前者是看流量赚人气,流量对后者的意义没有那么大,成熟的公司重点是看交易,转化率及回头率的。。
而当下的数据分析师多是学统计学出身的,一对数据放在那里,大家都擅长怎么算回归、怎么画函数。但是这批数学的人才缺乏商业意识,不知道这些数据对业务意味着什么,看不见一堆数据中谁和谁有关系,也就不知道该用什么的逻辑分析,也就无法充当老板的眼睛了。
前几天遇到一个老板,他说手下每天给他看几十个零散数据。我问,是不是数据越多越麻烦。他说我一下子就点出他的痛处了,因为请来的数据分析专家只把数据交到他面前,但是却没有把行为数据和商业数据的关系告诉他。
你说,一个公司CEO,每天看到几十个数据,什么PV、PU、UV等等等,他们有精力来解读吗?对于他们来说,只需要知道有问题吗?问题是什么?有新的发现吗?需要做什么?这就行了。
我把这个理解成为数据的世界里的“仪表盘”,比如说网站流量进来弹出率怎样就可以在仪表盘里呈现。你开车,如果水温过高,仪表盘亮灯提示。同样,在电子商务的交易中,也可以用一些数据组成“仪表盘”。
所以说,数据分析师不是单纯做数学题。
行为数据和商业数据,互相推动
一个好的仪表盘,出现好的情况和坏的情况,仪表盘都会有提示。而构成“仪表盘”,正是行为数据和商业数据之间的逻辑关系。
我自己发明了一种称谓:前端行为数据和后端商业数据。前段数据指访问量、浏览量、点击流及站内搜索等反应用户行为的数据,而后端数据更侧重商业数据,比如交易量、ROI, LTV(Life time Value)。
目前有些人关心行为数据,也有些人关心商业数据,但是没有几家网站是把行为数据和商业数据连起来看的。大家只单纯看某一端数据。国内小有名气的网站CEO,每天也只看一个结果数据:网站今天的成交量是多少,卖了多少件产品。
但是看数据看得走火入魔的人会明白,每个数据,就像散布在黑夜里的星星,它们之间彼此布满了关系网,只要轻轻按一下其中一个数据,就会驱动另外一个数据的变化。
大家都比较关心网站用户群,就以此举例子。
某一天,某网站发现自己的前端的注册量增加了不少,访问量也上去了,交易量却没有上去,不死不活。
原因是什么?这是许多网站的通病,每天有许多脑子在想这个问题。现在这个阶段,处在互联网前段的人只知道点击量等数据,很少问后端的商业数据,如谁一直在重复购买?谁影响了5%~15%核心用户群进来买东西?谁在给网站做正/负面传播?
而操作网站后端交易环节的人只知道卖东西,又很少问到前端数据,如一个客户进来网站平均停留时间了15分钟还是30分钟,这对将来重复购买的关系大吗?一个客户进了网站社区和没进社区,对产生交易量有关系吗?
找不到核心用户群的原因,很大原因是没有把行为数据与商业数据对接来看。
于是,前后端数据割裂,没有人知道其中的关系。作为网站的决策者,不知道网站的核心用户群的行为特徵,也不知道怎样刺激核心用户的增加,更不知道从一个用户进来网站之后到走出去,哪些环节是需要疏通。
当然这只是一个管中窥豹而已。一个平台运营商,反应用户行为的前端数据与后端的商业数据千千万万,卖家和买家也是千千万万,其中前端哪个数据对整个网站后端的交易量产生最大影响,只要针对这个前端数据猛下药,必然会刺激后端数据的增加;反过来,后端哪个交易数据比较高,摸清楚是从哪个渠道来的,主要贡献用户是谁,网站的产品设计就要倾斜于他们,对他们好一点,如此才会渠道前端的“转化率”等关键数据的提升。
如果一个网站的核心用户群每月以10%的速度在增长,不火也是怪事。
遗憾的是,今天许多电子商务公司,每天都在做“碰巧”游戏:今天推荐A家产品,明天撤下A家的产品,今天做低价促销,明天又做线下活动。这些决策的改变,没有仪表盘的指示或良好的监控,都是蒙着眼睛在碰巧。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13