我们聊一聊产品数据分析的日常工作
数据分析本来是一份枯燥的工作,它需要你有较好的逻辑分析能力,熟练的业务能力,敏锐的行业洞察力,最终才能做到用数据驱动商业化决策。
数据分析岗位经常被称为数据运营,我认为这是除了PM和客服之外又一个接触用户的岗位。好的数据运营甚至可以成为一名优秀的产品经理、公司管理层:不仅对用户行为做到心中有“数”,对于活动及效果监控也能做到面面俱到;甚至可以预测到行业发展趋势,对公司重大决策给出决定性建议。
关于产品数据运营日常数据分析工作,我认为可以从一下几个角度着手:
用户肖像分析:
用户画像分析是获取产品目标用户的主要方法之一,也是日常数据分析工作的一部分。通过性别、年龄、收入、地域等信息为用户打标签,如果能通过账户体系将用户其他行为(如访问行为、付费行为)打通,那么将形成完善的用户画像数据库,对精准化营销起到决定性作用(用户画像做的最好的应该就是京东、淘宝等电商网站了,甚至于它可以预测到你未来的某一段时间里可能需要某样商品,从而通过电邮、短信、微信等方式推送针对性商品促销信息)。
获取到用户肖像有很多种方法,这里着重写一些常用的,大家可以根据自家产品定位及内部资源自行选择最适合的:
方法1
可以在产品中嵌入用户基本资料的相关功能,通过任务引导及适当的奖励制度鼓励用户完善个人信息。我还见过一些产品的部分高级功能是通过完善个人信息后开启的,这种方法也不错。需要注意的是,一定不要让用户花费太多的时间去完善资料,同时也不要涉及过多用户隐私,避免用户反感进而造成流失;
方法2
利用一些第三方监控平台:如友盟、Google Analytics(GA)、或者百度指数等等;这些平台对于基础的用户画像都有统计和分析(当然受制于cookies影响,当用户清空或者拒绝读取cookies时会对数据产生些许偏差,需要数据采集后进行清洗)利用这些平台的好处是可以和广告投放数据相打通,也可以获取到行业竞品的数据发展趋势。
方法3
定期倾听用户的声音,比如调查问卷,回访等方式,用抽样的方法预测整体用户画像水平,同时因为问题设置的灵活性,也可以获取到很多关于同行业竞品的信息。
流量监控:
流量监控是需要从产品诞生之日起就要着手去做的一件事,因为它不仅涉及到产品迭代的方向发展,同时也可以用数据告诉我们哪些功能好用,哪些功能不好用需要优化,甚至哪些功能是没用的需要舍弃。对于活动运营而言,流量监控也是活动效果总结最重要的参考依据之一。
无论是内部技术团队自行埋点还是利用第三方工具进行数据监控(这里我想多说一句,选择自己研发还是利用第三方工具进行监控统计,一定要根据产品实际需求以及团队资源来考量。大公司资源较多,经常会选择自行研发,因为涉及到数据安全及精准性;小产品可以考虑选择市面较好的第三方工具进行数据埋点),一定要趁早做,而且要尽可能做的精细。
对于网站而言,完整的网站地图就是必不可少的功能之一,每个页面都需要放置正确的监控代码,用以监控到用户访问(PV / UV)、跳出(bounce rate)、页面停留时间、页面访问深度(即访问多少个页面)、访问渠道来源(从哪个网站来的,以什么方式来的)、留存率(次日流量、3日留存、7日留存、14日留存、28日留存)等。关键流程一定要部署正确,如注册流程(涉及到新用户)、购买流程(涉及到转化)等等,这时候转化漏斗就是帮助我们做页面分析的重要工具。通过漏斗看到各个关键页面的流量进入与转化,用户离开比例,如果一个漏斗的某一个流程数据发生异常,就需要着重看一下是否是产品功能上出现问题。如果使用GA等监控工具,可以做到广告投放与用户访问行为数据互通,利用归因模型分析出射手渠道和助攻渠道,不仅可以做到广告优化提升转化率,还可以发现新的合作渠道甚至于新的用户集中群体。
对于App而言,DAU、MAU、Interactions、访问深度等等就是我们需要着重观察的数据,相比较网站监控来说,app的数据监控更适合从账户体系着手,每个用户就是独立的个体,用户独立的访问行为;同时与国能与画像数据打通,就可以拿到不同类型的用户对于产品访问行为、产品功能需求的重要依据。
收入(转化)监控:
收入监控是衡量产品商业化水平的重要依据,产品的目标形态是实现商业化,所以不同类型的产品都要要求有持续的可变现能力,否则会逐渐被市场竞争所淘汰。
日常监控的数据有收入流水、盈利、盈利率(同比、环比)、补贴、补贴率、用户首次付费、再次付费数、留存率等等。这类数据一般来讲都是直接写入后台数据库的,也就是说产品内部员工才可以查看,同时可能会被分配不同的查看权限。一些公司也需要产品数据运营人员有一定的SQL能力,可以读懂数据库代码,能写或者能描述清楚需求让技术帮你写。
以上是简单介绍了产品数据运营日常的监控工作及我自己在工作中的一些思考。数据分析工作本身需要员工对于行业的熟知,同时在工作中不断积累经验,利用好一些资源将数据进行整合分析,单纯的只看某一项或者某一方面获取到的信息肯定是片面的。
能够在数据中发现问题,形成产品优化的有效建议,再到最后的商业化产品的指导意见,数据产品运营的工作还有很多很多。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13