零售业中常见数据分析
财务分析:
1)分析企业的财务状况,了解企业资产的流动性、现金流量、负债水平及企业偿还长短期债务的能力,从而评价企业的财务状况和风险。
2)分析企业的资产管理水平,了解企业对资产的管理状况,资金周转情况。
3)分析企业的获利能力。
4)分析企业的发展趋势,预测企业的经营前景。
同时,系统还应该按照部门、人员、商品、供应商、时间等各个维度综合分析各项财务指标,如:成本、毛利、利润、库存、结算、盈亏平衡点、销售数量、销售金额、市场占有率等等。
销售分析:
主要分析各项销售指标,例如毛利、毛利率、坪效、交叉比、销进比、盈利能力、周转率、同比、环比等等;而分析维又可从管理架构、类别品牌、日期、时段等角度观察,这些分析维又采用多级钻取,从而获得相当透彻的分析思路;同时根据海量数据产生预测信息、报警信息等分析数据;还可根据各种销售指标产生新的透视表,例如最常见的ABC分类表、商品敏感分类表、商品盈利分类表等。
这些复杂的指标在原来的数据库中是难以实现的,老总们虽然知道他们非常有用,但由于无法得到,使得这些指标的地位也若有若无。直到BI技术出现之后,这些指标才重新得到了管理者和分析者们的宠幸。
商品分析:
商品分析的主要数据来自销售数据和商品基础数据,从而产生以分析结构为主线的分析思路。主要分析数据有商品的类别结构、品牌结构、价格结构、毛利结构、结算方式结构、产地结构等,从而产生商品广度、商品深度、商品淘汰率、商品引进率、商品置换率、重点商品、畅销商品、滞销商品、季节商品等多种指标。通过对这些指标的分析来指导企业商品结构的调整,加强所营商品的竞争能力和合理配置。
顾客分析:
顾客分析主要是指对顾客群体的购买行为的分析。例如,如果将顾客简单地分成富人和穷人,那么什么人是富人,什么人是穷人呢?实行会员卡制的企业可以通过会员登记的月收入来区分,没有推行会员卡的,可通过小票每单金额来假设。比如大于100元的我们认为是富人,小于100元的我们认为是穷人。好了,现在老总需要知道很多事情了,比如,富人和穷人各喜欢什么样的商品;富人和穷人的购物时间各是什么时候;自己的商圈里是富人多还是穷人多;富人给商场作出的贡献大还是穷人作出的贡献大;富人和穷人各喜欢用什么方式来支付等等。此外还有商圈的客单量、购物高峰时间和假日经济对企业影响等分析。
供应商分析:
通过对供应商在特定时间段内的各项指标,包括订货量、订货额、进货量、进货额、到货时间、库存量、库存额、退换量、退换额、销售量、销售额、所供商品毛利率、周转率、交叉比率等进行分析,为供应商的引进、储备、淘汰(或淘汰其部分品种)及供应商库存商品的处理提供依据。主要分析的主题有供应商的组成结构、送货情况、结款情况,以及所供商品情况,如销售贡献、利润贡献等。通过分析,我们可能会发现有些供应商所提供的商品销售一直不错,它在某个时间段里的结款也非常稳定,而这个供应商的结算方式是代销。好了,分析显示出,这个供应商所供商品销售风险较小,如果资金不紧张,为什么不考虑将他们改为购销呢?这样可以降低成本呵。
人员分析:
通过对公司的人员指标进行分析,特别是对销售人员指标(销售指标为主,毛利指标为辅)和采购员指标(销售额、毛利、供应商更换、购销商品数、代销商品数、资金占用、资金周转等)的分析,以达到考核员工业绩,提高员工积极性,为人力资源的合理利用提供科学依据的目的。主要分析主题有,员工的人员构成、销售人员的人均销售额、对于开单销售的个人销售业绩、各管理架构的人均销售额、毛利贡献、采购人员分管商品的进货多少、购销代销的比例、引进的商品销量如何等等。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13