
SAS中数据集的合并
数据集的合并分为两种情形:第一种是纵向合并,即把具有相同变量的数据集合并起来;另一种是横向合并,把记录数目相同的数据集合并起来。
1 纵向合并
纵向合并的方法很简单,就是使用SET 语句将几个数据集的内容复制到一个数据集中就可以了。
例1 上一次曾经把score 数据集按照性别拆分到两个数据集scorem 和scoref,这两数据集具有完全相同的变量所以满足纵向合并的要求现在重新将它们合并程序如下
data combine;
set scorem scoref;
run;
proc print;
run;
输出数据集combine
Obs name sex math chinese english
1 Tom m 95 87 84
2 Mike m 80 85 80
3 Fred m 84 85 89
4 Alex m 92 90 91
5 Cook m 75 78 76
6 Butt m 77 81 79
7 Geoge m 86 85 82
8 Tod m 89 84 84
9 Alice f 90 85 91
10 Jenny f 93 90 83
11 Kate f 97 83 82
12 Bennie f 82 79 84
13 Hellen f 85 74 84
14 Wincelet f 90 82 87
15 Christian f 89 84 87
16 Janet f 86 65 67
可以看到,在新的数据集中原数据集score 中的每一条记录都可以找到,惟一不同的是记录的顺序发生了,变化所有男生的记录都放在前面女生的记录放在后面,这是因为在复制的过程中将scorem 数据集放在scoref 数据集的前面
2 横向合并
横向合并要求数据集必须具有相同的记录数目,一般是同一观测的不同变量横向合并使用MERGE语句
例2 可以把原有的记录所有学生成绩的score 数据集拆分为三个数据集。第一个数据集包括姓名性别数学成绩,第二个数据集包括语文成绩,第三个数据集只包括英语成绩,这样这三个数据集就完全符合横向合并的条件
先将数据集score 拆分开来
data scorea;
set sasuser.score;
keep name sex math;
run;
data scoreb;
set sasuser.score;
keep chinese;
run;
data scorec;
set sasuser.score;
keep english;
run;
这样就有了三个数据集现在运用MERGE 语句将它们重新合并在一起
data combine;
merge scorea scoreb scorec;
run;
proc print;
run;
可以从输出结果中看到,横向合并生成的数据集与原有的score 数据集完全相同,有些时候在几个数据集中观测的顺序可能被打乱这时就必须先排序再合并。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03