京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS基础技巧假设检验的内涵及步骤
答:在假设检验中,由于随机性我们可能在决策上犯两类错误,一类是假设正确,但我们拒绝了假设,这类错误是“弃真”错误,被称为第一类错误;一类是假设不正确,但我们没拒绝假设,这类错误是“取伪”错误,被称为第二类错误。一般来说,在样本确定的情况下,任何决策无法同时避免两类错误的发生,即在避免第一类错误发生机率的同时,会增大第二类错误发生的机率;或者在避免第二类错误发生机率的同时,会增大第一类错误发生的机率。
人们往往根据需要选择对那类错误进行控制,以减少发生这类错误的机率。大多数情况下,人们会控制第一类错误发生的概率。 发生第一类错误的概率被称作显著性水平,一般用α表示,在进行假设检验时,是通过事先给定显著性水平α的值而来控制第一类错误发生的概率
在这个前提下,假设检验按下列步骤进行:
1、确定假设;
2、进行抽样,得到一定的数据;
3、根据假设条件下,构造检验统计量,并根据抽样得到的数据计算检验统计量在这次抽样中的具体值;
4、依据所构造的检验统计量的抽样分布,和给定的显著性水平,确定拒绝域及其临界值;
5、比较这次抽样中检验统计量的值与临界值的大小,如果检验统计量的值在拒绝域内,则拒绝假设;
到这一步,假设检验已经基本完成,但是由于检验是利用事先给定显著性水平的方法来控制犯错概率的,所以对于两个数据比较相近的假设检验,我们无法知道那一个假设更容易犯错,即我们通过这种方法只能知道根据这次抽样而犯第一类错误的最大概率(即给定的显著性水平),而无法知道具体在多大概率水平上犯错。计算P值有效的解决了这个问题,P值其实就是按照抽样分布计算的一个概率值,这个值是根据检验统计量计算出来的。
通过直接比较P值与给定的显著性水平α的大小就可以知道是否拒绝假设,显然这就代替了比较检验统计量的值与临界值的大小的方法。而且通过这种方法,我们还可以知道在p值小于α的情况下犯第一类错误的实际概率是多少,p=0.03<α=0.05,那么拒绝假设,这一决策可能犯错的概率是0.03。需要指出的是,如果P>α,那么假设不被拒绝,在这种情况下,第一类错误并不会发生。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29