大数据带来的“大挑战”不容忽视
大数据研究领域可谓炙手可热,然而对数据中的价值加以利用仍然充满挑战。今天,我们将对此类挑战进行详尽解析。
大数据的生成速度令人错愕,事实上90%的可用数据是在过去两年当中才刚刚出现。如今我们需要努力分析大数据,从而发现其中可用以指导决策及战略性业务转型的洞察结论。
大数据应用已经开始在改进产品、提升服务水平及客户服务等领域发挥作用。下面来看一组具体数字:只有17%的企业尚无任何计划建立大数据项目,而超过70%的企业已经开始使用大数据——包括将其整合至业务当中,或者作为试水性项目。数据技术正在逐步成熟,亦有越来越多组织机构准备将其纳入信息管理与分析基础设施当中。
然而,以下大数据带来的“大挑战”同样不容忽视。
找到用于交流大数据的语言
各类科学,包括化学乃至数学都凭借着一种特定语言的出现而获得巨大的推动作用。很明显,我们必须在大数据找到同样值得依赖的特定语言,从而像使用代数符号以及合适的编程语言那样更好地对其加以分析。
提升数据可靠性
随着可用数据量的不断增长,我们必须有效区分“数据”的“信号”以及“有价值信息”。遗憾的是,截至目前仍有很多企业难以找到最理想的数据以及具体使用方式。这区分“垃圾数据”与保障数据质量已经成为一大关键性难题。
数据访问
数据访问与连接性同样是一大障碍。麦肯锡公司调查显示,目前仍有大量数据点未能接入网络,因此企业往往还不具备管理整体业务所必需的数据平台。
将更多复杂数据纳入进来
如果说大数据的起步阶段是在同“简单”数据作斗争(例如数字表以及图形等),那么如今需要处理的数据正变得愈发复杂:图片、视频以及对物理乃至生活环境的描述等等。因此,我们有必要重新审视并构建大数据工具及架构,用以捕捉、存储并分析多样性数据。
更好地整合时间变量
时间维度亦是大数据发展中的一大重要挑战,即如何分析长期因果关系,而不仅仅是处理实时数据流。最后,这一问题亦会给存储领域带来挑战。我们需要认真选择以切实承载如此庞大的数据存储量。
IT架构
数据世界的技术环境正在快速发展,因此能够有价值数据的前提在于同拥有强大创新能力的技术伙伴开展合作,从而建立正确的IT架构以高效适应各类变化因素。
安全性
最后但同样的重要的是安全问题。我们需要利用团队中每位成员的对应身份进行数据访问管理,同时配合适当的数据加密机制,从而避免各类潜在风险。
大数据技术带来的规模化趋势同样给科学、经济以及政治等领域带来深远影响,甚至给人类的发展轨迹打上了深深的烙印。
大数据正挑战我们的分析能力以及对世界的认知方式。因此在迎接变化及不断成长的同时,我们亦应当坚守以人为本的原则,立足精益、与时俱进、秉持诚信并服务于整个世界。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20