
假设检验是统计学中的一种推断方法,用来判断两个样本或总体间的差异是由于抽样误差引起的还是本质差别造成的。R语言中提供了很多假设检验函数,如F检验,t检验和卡方检验等等。本篇文章介绍如何使用R语言中的这些函数进行假设检验。
二项分布检验
假设一个广告的点击率为0.02,更换新的广告创意后1000次曝光获得了23次点击,新广告在点击率上是否明显优于老广告?
H0:新广告与老广告效果无差异
H1:新广告效果优于老广告
#老广告点击率0.02,新广告1000次广告曝光获得23次点击是否明显优于老广告binom.test(x =23,n = 1000,p = 0.02,alternative ="greater",conf.level = 0.95 )
p-value = 0.2778>0.05,在0.95的置信区间下接受原假设H0。新广告与老广告在点击率上没有显著差异。
#1000次访问0.02点击率下差异显著的临界值qbinom(p = 0.95,size = 1000,prob = 0.02)
[1] 28
新广告在1000次广告曝光中点击量需要提升到28次以上才能明显优于老广告的效果。
假设一次市场推广活动中前一个小时有50人注册,后一个小时有60人注册,后一小时的注册人数是否明显高于前一小时?
H0:前一小时与后一小时注册人数无差异
H1:后一小时注册用户数量高于前一小时
#上一小时50人注册,下一小时60人注册,后一小时是否显著高于前一小时poisson.test(x = 60,T = 50,alternative ="greater",conf.level = 0.95)
p-value = 0.09227>0.05,在0.95的置信区间下接受原假设H0,后一小时注册人数与前一小时无差异。
#与上一小时50人注册差异显著的临界值
qpois(0.95,lambda=50)
[1] 62
后一小时的注册用户数需要提升到62以上才能明显高于前一小时的注册用户数。
假设某流量渠道的目标是每日带来150个咨询,在过去的一周带来的咨询用户数量分别为229,164,121,137,145,127,123,我们是否能认为该渠道已经达到目标,即每日的平均咨询量大于150?
这里使用单样本t检验,首先建立假设。
H0:每日平均咨询量不大于153,未达到目标。
H1:每日平均咨询量大于153,达到目标。
#将过去一周咨询用户数量赋给XX=c(229,164,121,137,155,127,143)#计算过去一周咨询量的均值mean(X)
[1] 153.7143
#过去一周咨询用户数量是否达到目标
t.test(X,alternative ="greater",mu=153,conf.level = 0.95)
p-value = 0.4801>0.05,在0.95的置信区间下接受原假设H0,流量渠道的咨询量没有达到目标。
假设两个流量渠道在过去的一周分布为网站带来咨询用户,这两个流量渠道带来的咨询用户数量是否有显著差异?
这里使用双样本t检验,首先建立假设。
H0:两个流量渠道带来的咨询用户数量没有显著差异。
H1:两个流量渠道带来的咨询用户数量存在有显著差异。
#流量渠道1带来的咨询用户数量赋值给
XX=c(229,164,121,137,155,127,143)
#流量渠道2带来的咨询用户数量赋值给
YY=c(175,120,187,144,117,184,135)
进行双样本t检验之前先进行方差检验,确定两组样本方差是否相同。 H0:两个总体方差相同 H1:两个总体方差不同
#方差检验,确定两个流量渠道的咨询量是否相同
var.test(x = X,y = Y,conf.level =0.95)
p-value = 0.6469>0.05,在0.95的置信区间下接受原假设H0,两个总体方差相同。进行等方差t检验。
#等方差t检验,两个流量渠道带来的咨询用户数量是否有差异
t.test(X,Y,var.equal=TRUE,alternative ="two.sided")
p-value = 0.9125>0.05,接受原假设H0,在0.95的置信区间下两个流量渠道的咨询用户量没有显著差异。
假设网站对咨询流程进行了优化并进行了测试,那么改版后的效果是否明显优于改版前?
这里使用成对t检验,首先建立假设。
H0:改版后的效果与改版前无差异
H1:改版后的效果明显优于改版前
#改版前注册用户量赋给before
before=c(229,164,121,137,155,127,143)
#改版后注册用户量赋给after
after=c(217,284,155,190,158,170,180)
#改版前的咨询量是否小于改版后的咨询量
t.test(before-after,alternative ="less",conf.level = 0.95)
p-value = 0.02362<0.05,拒绝原假设H0,接受备择假设H1。在0.95的置信区间下改版后的效果明显优于改版前。
假设广告创意A1315次访问,65次转化,转化率4.94%,广告创意B939次访问,54次转化,转化率5.75%。广告创意B的效果是否优于广告创意A?
这里使用卡方检验,首先建立假设。
H0:两个广告创意的效果无差异
H1:广告创意B的效果优于广告创意A
对源数据近整理,广告创意A1250次未购买,65次购买,广告创意B885次未购买,54次购买。以此建立列联表。
#创建列联表X=c(1250,885,65,54)
dim(X)=c(2,2)
X
#使用卡方检验chisq.test(X,correct =FALSE)
p-value = 0.3978>0.05,在0.95的置信区间下接受原假设H0,两个广告创意效果没有显著差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08