智能大数据整合的价值
在过去的几年里,人们从知道大数据的概念,发展到一些组织能够真正实施一些大数据项目。然而,在一些组织的数据中心团队负责实施这些业务驱动的举措之后,现在才开始认识到实现真正大数据集成的复杂性和深度。
大数据通过人们生活,工作平台,应用程序,以及设备提供了多种格式的大量的数据。大量的结构化和非结构化的内容往往使用户非常难以访问和分析所需的信息。
现代数据中心往往是一个复杂的系统,相互连接的服务器和设备存储,处理和分发各种来源的大量信息。但智能大数据整合,在改造传统的信息系统,可以缓解从地理位置分散的网站,甚至其他数据中心的聚集和分析信息的斗争。
现代数据中心趋向于储存,处理互联服务器和设备的一个复杂的系统,以及大量的信息分发和从各种来源。但聪明的大数据整合,重塑传统IT系统,可以缓解汇总和分析来自地理上分散的地点,甚至其他的数据中心信息的斗争。
如果一个数据中心是一个组织的大脑,那么可以认为其数据源就是反馈给神经和细胞的信息。智能大数据集成意味着该组织的“神经系统”,为整个企业快速传达信息,为现代商业生态系统起着至关重要的作用。但这也意味着数据中心的管理人员将获得他们寻求的准确和高效的数据处理的安全性,质量,控制和管理。
从哪里开始
任何大数据项目的目的是为了获得更好的结果,其中包括直接进行实时洞察和基于循环模式的长期观点,但首先你必须克服早期的集成挑战。所以要问你自己:
· 你所有的关键数据来自哪里?
· 你的组织如何聚合并快速移动所有的数据?
· 如何分析可用的数据是否有价值?
· 通过在技术和基础设施方面的投资,你的企业如何才能最大限度地发挥价值?
最终,大数据整合摄入,准备和提供的数据,不管是什么来源。这包括利用在企业每一类型的数据,包括复杂的,往往是非结构化的机器产生的数据,这通常需要一个更加融合的数据中心的基础设施。
因此,第一步骤,可以说是最重要的一步,是整合所有可用的数据。以下是确定你的大数据集成项目有效实施的三个关键领域。
(1)可靠的数据流
摄入大数据到一个平台,像ApacheHadoop这样的平台是不够智能的,不足以启动一个Hadoop集群,输入所有类型的数据,并得出具有突破性的新见解,展现自己。大数据行业厂商似乎每一个星期都在发布新的工具和升级版本,甚至将某一技术引入到你的堆栈,虽然功能并不强大,但却可以使你的整个平台过时。
这是常见的企业应用程序和Hadoop集群之间的经验数据流和数据退化问题。因此,大多数反应涉及手工编码正在尝试努力工作,并抛弃一些其他类型的技术。通常情况下,这是一个解决方案。但这不是最终的解决办法。
采用一个安全的,敏捷的集成平台,专注于调动实际的数据流进出数据中心的管道,确保在越来越复杂的工作场所的生态系统进行可靠的信息交换。
(2)可扩展性
目前存在一些主要的整合,治理和安全问题,需要针对不同层次的大数据采取不同的举措,特别是在数据中心。我们今天正在经营业务在其规模和信息方面日益庞大,这使得数据成为“大数据”。而人们需要跨越地域和传统的数据中心来管理大数据,那些过时陈旧的工具已经严重低估了现代需求。
随着企业的发展和新的数据源开始发挥作用,需要增加不同的技术,你的系统将无一例外地必须适应。如果你将现在的问题通过手工编码解决,当你试图扩展之后,会不会在拥有它以后抛弃它?
简单地增加更多的工作人员或代码的问题并不是一个可扩展的策略,也不会解决复杂的大数据传输问题。需要有一个坚实的数据集成和管理平台下的商业智能工具,可以轻松地扩展,采用众多的大数据工具,并且其来源而不中断。
(3)数据质量,分类,治理
而从结构化数据出来的CRM和ERP应用程序通常很好地进行企业的分析,但它是非结构化的数据,更加难以管理。企业必须以某种方式治理信息混乱,因为即使是最小的数据质量的问题也会产生巨大的错误。成功的公司在元数据级别上做到这一点。
通过元数据定义信息是至关重要的,因为它提供了来自大数据的结构,帮助进行分类和整理这些信息以后可以轻松找到。当信息流动到你的数据湖,必须进行某种分类,因此你正在做分析的数据实际上是准确的。
企业在错误的数据方面浪费了一些技术周期,特别是昂贵的今天。所有这些质量和分类必须在某一点上进行,但它应该在早期的水平,即使在集成周期。企业认为在数据质量的早期可以得到更好的,更有价值的分析。
总结:
每一个组织都会成为一个数据组织,或是被甩在后面。是什么使一个公司可以独有他们的数据,并更好地使用数据。因此,一个成功的大数据项目最终取决于一个组织的捉捕其数据的能力。
快速摄入和处理的大数据,需要一个可靠的集成基础设施,可以很容易地扩展以容纳大量的数据量,驱动实时访问,并支持每一个请求分析。利用信息,以获得竞争优势,这听起来很伟大,但只有可靠准确地集成了所有的数据源之后,才能建立一个可用的数据湖。
当正确的信息传递给正确的人,所以可以理解并采取行动最大限度地提高你的大数据整合的价值。但是,只有当企业支持提供了大数据下的投资和可靠的集成平台,他们将获得每个企业都在寻求大数据的最佳回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10