京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言与数据的预处理
在面对大规模数据时,对数据预处理,获取基本信息是十分必要的。今天分享的就是数据预处理的一些东西。
一、获取重要数据
在导入大规模数据时,我们通常需要知道数据中的关键内容:最值,均值,离差,分位数,原点矩,离差,方差等。在R中常用的函数与作用整理如下:
统计函数
作用
Max
返回数据的最大值
Min
返回数据的最小值
Which.max
返回最大值的下标
Which.min
返回最小值的下标
Mean
求均值
Median
求中位数
mad
求离差
Var
求方差(总体方差)
Sd
求标准差
Range
返回【最小值,最大值】
Quantile
求分位数
Summary
返回五数概括与均值
Finenum
五数概括(最值,上下四分位数,中位数)
Sort
排序(默认升序,decreasing=T时为降序)
Order
排序(默认升序,decreasing=T时为降序)
Sum
求和
length
求数据个数
emm
Actuar包中求k阶原点矩
skewness
Fbasic包中求偏度
kurtosis
Fbasics包中求峰度
注:对象为分组数据,矩阵时返回的不是整体的方差,均值,而是每一列(组)的方差均值其余变量类似。
二、直方图与频数统计
对于数据分布的认识,在大规模时有必要使用直方图。在R语言中,直方图的函数调用为:
hist(x, breaks = "Sturges",
freq = NULL, probability = !freq,
include.lowest = TRUE, right = TRUE,
density = NULL, angle = 45, col = NULL, border = NULL,
main= paste("Histogram of" , xname),
xlim = range(breaks), ylim = NULL,
xlab = xname, ylab,
axes = TRUE, plot = TRUE, labels = FALSE,
nclass = NULL, warn.unused = TRUE, ...)
这里值得一提的是,分组参数breaks默认使用史特吉斯(Sturges)公式,根据测定数n 来计算组距数k,公式为:k=1+3.32 logn。当然也可以自己设定一个数组来决定分组。(举例参见《R语言绘图学习笔记》)
说完频率分布直方图,我们还有频率分布直方表。对于数据的统计,函数table可以统计出数据中完全相同的数据个数。例如对《全宋词》中暴力拆解(两个相邻字算一词)词语使用数目的统计程序如下:
[plain] view plaincopyprint?cut(x, breaks, labels = NULL, include.lowest = FALSE, right = TRUE, dig.lab = 3, ordered_result = FALSE, ...)
举一个具体例子,某一款保险产品,假设保单到达的速率为10张/天,理赔发生的速率为 1次/天。假设每张保单价格c=120,理赔额服从参数为v=1/1000 (以c*lambda1=1.2*lambda2/v设定)的指数分布。设定初始u=3000时,计算到第1000天为止发生破产的概率。(案例摘自《复 合泊松过程模型的推广和在R语言环境下的随机模拟》 )
破产过程的R代码如下:对于数据的分布估计经验分布是一个非常好的估计。在actuar包中函数ogive给出的实现:
ogive(x, y = NULL, …)
## S3 method for class ‘ogive’
print(x, digits = getOption(“digits”) – 2, …)
## S3 method for class ‘ogive’
summary(object, …)
## S3 method for class ‘ogive’
knots(Fn, …)
## S3 method for class ‘ogive’
plot(x, main = NULL, xlab = “x”, ylab = “F(x)”, …)
还是以上面的例子数据zz为例:
ogive(zz)
plot(ogive(zz))
输出结果:
Ogive forgrouped data
Call:ogive(zz)
x = -Inf, -3, -2, …, 3, Inf
F(x) = 0, 0.0011, 0.0229, …,0.9985, 1
由于大数定律的存在,很多情况下,正态性检验是十分有必要的一个分布检验,在R中提供的正态性检验可以汇总为下面的一个正态检验函数:
对于分布的检验还有卡方检验,柯尔莫哥洛夫检验等,在R中也有实现函数chisq.test()等。我们同样以一个例子来说明:
解答如下:(结果以注释形式标明)
[plain] view plaincopyprint?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21