大数据的四大特征
说起大数据,人们得第一反应是大,而麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。而WiFi作为的当下最重要的流量入口,通过用户的上网行为采集大数据,并通过大数据分析用户画像,从而进行一系列的变现行为,也成为了当下商业WiFi企业普遍采取的方式。
虽说如此,但是纵观整个WiFi产业,从最早的广告变现、流量变现到如今普遍使用的大数据、O2O等多种变现模式,大多数的WiFi相关从业企业并没有实现真正意义上的变现,还是在在依靠资本苦苦支撑,撇开其他的变现模式不谈, WiFi行业大数据变现究竟路在何方?
正如上面所说,大数据具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征,那么我们就这四大特征一一进行分析:
第一、海量的数据规模。
大数据相较于传统数据最大的区别就是海量的数据规模,这种规模大到“在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合”。就商业WiFi企业所拥有的数据而言,即便整合一个商场或者商业中心所采集到的数据也很难达到这种“超出范围”的数据量,更不要说少有WiFi企业可以做到布点一整个商业中心,现在多数的商业WiFi企业还是处于小规模发展阶段,所得到的数据多是某一个门店或者单独营业个体的数据,并不能称之为大数据。所以要想收集海量的数据,就目前的行业发展态势而言,最佳的选择是企业合作,通过合作,集合多家企业的数据,填补数据空白区域,增加数据量,真正意义上实现大数据到大数据的跨步。
第二、快速的数据流转。
数据也是具有时效性的,采集到的大数据如果不经过流转,最终只会过期报废。尤其是对于商业WiFi企业来说,大多数商业WiFi企业采集到的数据都是在一些用户的商业行为,这些行为往往具备时效性,例如,采集到某位用户天在服装商场的消费行为轨迹,如果不能做到这些数据的快速流转、及时分析,那么本次所采集到的数据可能便失去了价值,因为这位用户不会每一天都在买衣服。快速流转的数据就像是不断流动的水,只有不断流转才能保证大数据的新鲜和价值。
第三、多样的数据类型。
大数据的第三特征就是数据类型的多样性,首先用户是一个复杂的个体,单一的行为数据是不足以描述用户的。目前WiFi行业对大数据的使用多是通过分析用户轨迹,了解用户的行为习惯,由此进行用户画像,从而实现精确推送。但是单一的类型的数据并不足以实现用户画像,例如,笔者之前了解过一些企业可通过用户某一段时间的在某一区域内的饮食数据,并由此在用户进入这一区域的时候推送相关信息,但是这一信息只是单纯的分析了用户一段时间的饮食数据,并没有考虑到用户现阶段的身体状况、个人需求和经济承受能力等等,所以这种推送的转化率也就可想而知。
第四、价值密度低。
大数据本身拥有海量的信息,这种信息从采集到变现不要一个重要的过程——分析,只有通过分析才能实现大数据从数据到价值的转变,但是众所周知,大数据虽然拥有海量的信息,但是真正可用的数据可能只有很小一部分,从海量的数据中挑出一小部分数据本身就是各巨大的工作量,所以大数据的分析也常和云计算联系到一起。只有集数十、数百或甚至数千的电脑分析能力于一身的云计算才能完成对海量数据的分析,而很遗憾的是,目前WiFi行业中的绝大部分企业并不具备云计算的能力。
以上四点,既是大数据的特征,也是影响WiFi行业大数据变现原因,这些因素对于大多数的WiFi企业来说很难单独解决,所以才需要全行业、甚至与多个行业的合作来完成。当然大数据本身也是具有价值的,WiFi企业可以通过出售大数据变现,只是,相比于多方合作最获取的大数据价值而言,单纯的出售所得到的价值真的是太少了。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13