
R语言实现交通行业事故案例之黑点确定
浅谈道路黑点定义,定义黑点道路为历史发生事故起数较多和近期发生事故明显增多两种道路,并且用简易事故、一般事故、较大事故、特大事故确定当前发生事故的严重程度,即用当量事故数表示,事故越严重,则当事事故数越大,当量事故数定义:
1、历史事故较多道路
通过对各个道路历史数据的分析,找出历史发生事故频率较大的道路作为黑点道路,对于经常发生事故的道路属于此类。如,取所有道路三年内的当量事故数作为历史数据,找出当量事故数较大的道路作为预定黑点道路;
2、近期发生事故遽增道路
分析出近期时段较以往事故发生明显增多道路作为预定黑点道路,这样可以找出历史发生事故很少,但是最近明显发生了很多事故的道路。如,平时最多发生事故起数为1起的事故,近一个月连续发生了3起,则同比增长了200%,则此类道路可作为预定黑点道路。
3、预定黑点道路去重
对1和2分析出的预定黑点道路进行合并,找出所有预定事故黑点道路,因为历史发生事故较多道路也可能近期突然发生事故数增多,也属于近期发生事故遽增道路。
针对确定的预定黑点道路,分别运用聚类算法,找出当前道路上事故发生较密集的各个区域(比如,使用密度聚类算法),作为事故黑点区域。地图展现时只针对发生较密指定半径区域为一个事故黑点区(一条道路有可能有个黑点区域),避免地图展现时整体道路作为一个黑点。
根据步骤二分析的事故黑点区域,给定区域中心坐标和半径在地图上展现,然后用户可以标注当前黑点区域的具体位置。
1、连接Oracle数据库,并读取所需字段
2、分析历史事故发生较多道路,得到结果集Res
3、分析近期发生事故遽增道路Res2
4、预定黑点道路去重,得到结果集Res,并入库
5、黑点道路上事故发生较密区域查找,使用密度聚类算法DBSCAN
附DBSCAN:
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。DBSCAN自动地确定簇个数,而对于K-means,簇个数需要作为参数指定。然而,DBSCAN必须指定另外两个参数:Eps(邻域半径)和MinPts(最少点数)。
DBSCAN中的几个定义:
Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域;
核心对象:如果给定对象Ε领域内的样本点数大于等于MinPts,则称该对象为核心对象;
直接密度可达:对于样本集合D,如果样本点q在p的Ε领域内,并且p为核心对象,那么对象q从对象p直接密度可达。
密度可达:对于样本集合D,给定一串样本点p1,p2….pn,p= p1,q= pn,假如对象pi从pi-1直接密度可达,那么对象q从对象p密度可达。
密度相连:存在样本集合D中的一点o,如果对象o到对象p和对象q都是密度可达的,那么p和q密度相联。
可以发现,密度可达是直接密度可达的传递闭包,并且这种关系是非对称的。密度相连是对称关系。DBSCAN目的是找到密度相连对象的最大集合。
详细算法描述参考度娘
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10