8个数据分析方法,指导营销策略
营销是企业根据目标用户的需求提供产品和服务,实现盈利的一切经营活动,关于营销的数据分析,有哪些工作可做,该怎么做?
分析思路
1、对谁营销-用户行为的分析
用户行为指挥着营销活动的走向,从新品开发到价格定制;从渠道管理到品牌管理。用户行为分析是营销分析的首要内容,是具有差异化的,也正是这样的差异性,要做市场细分和目标市场的选择,针对目标用户做精准营销。
2、如何营销-4P营销组合
4P营销组合即开发产品、制定价格、蒲剑渠道、市场推广
3、营销效果评估
企业常做的营销效果评估有三种:用户满意度、广告效果评估和品牌资产诊断。
根据以上的营销分析思路,针对营销分析的这三项内容一共有这8种方法。
由于由于篇幅所限,每类各挑一种讲述。
聚类分析
聚类分析是市场细分方法中最常见的。市场细分是根据用户亲疏程度将相似用户聚在一起,使类内差异小、类间差异大的过程。
举个例子,为了研究移动用户手机消费习惯,我们在数据中收集了7个变量:客户编号、工作日上班时期时长、工作日下班时期市场、周末电话时长、国际电话时长、总通话时长、平均每次通话时长来对用户进行细分。采取迭代聚类方法分析,利用SPSS做初步分析、然后标准化处理、聚类分析,利用excel生成如下的数据条:
这样一来可对各类用户做特征描述:
定标比超分析
通常用于渠道的分析研究。定就是定标杆。比如线下实体店,如何评价其表现?通常用渠道覆盖率和渠道效率。
渠道覆盖率=覆盖网点数/该地网店总数,体现渠道的广度。
渠道效率=网店的平均销售量,反映渠道的深度。
标就是建立评价指标体系
比如电商行业在抽取后台数据,利用FineBI做进一步数据分析,通过引用转化率和UV确定一个渠道价值指标,形成一个矩阵分析图就很好判断每个渠道的价值以及优化空间了。
比超是为了比较差异,提出赶超举措。
比如上图的每个渠道比重都是一样的,通过进一步分析每个渠道的影响因素,比如曝光量、投放时间、投放价格等指标对驱动啊影响的程度,得到每个指标的权重,收集各个指标的表现数据来分析。
举个例子,架设有百货、超市、家电连锁三个渠道,每个渠道比重如下
收集各个品牌在各项指标的表现数据
根据覆盖率的指标权重和品牌表现画出如下图:
品牌A与标杆品牌相比,总体处于低势,原因是A品牌在最关键的家电连锁商铺货不足,渠道覆盖率低。关于渠道覆盖率低的分析我们可以进一步做分析,类似的方法,明确影响因素、设置权重、确定评价指标。
漏斗分析
用户行为分为以下几个阶段:产生需求、信息收集、方案必选、购买决策和购后行为。这五个阶段就像漏斗,最终只有一部分转为成功用户,每个阶段都有用户流失。如果能找到每个阶段流失的原因就可以找到改进方向了。
从产生需求到信息收集,用户流失有可能是品牌、产品传播不给力,造成部分用户转向竞品,或者是信息收集的方式不够友好。怎么解决?从解决用户的三个问题下决策:为什么买,哪里买,多少钱。
从信息收集到方案比选和购买决策,这个过程用户的流失取决于企业传达了什么样的信息,是否把优势表达出来,是否贴合的用户的需求。
再到购后行为,这里取决于用户的体验,产品的体验是否达到了用户的预期,操作复杂,视觉糟糕都是导致用户流失的原因。
这五个阶段都有一个转化的比率,或者称为效率,我们常常将这一段时间的效率和前期比,和竞品比,和预期目标比,来总结经验,做出决策,引导更好的转化率。
这样的分析也成成运用到品牌分析里面,对应这样五个阶段
最后,关于营销主题的数据分析,和其他主题一样,需要做一个统一的管理。除此之外,由于如今市场的变动迅速,不可能做到每阶段花大把时间做定期分析,这样的效率是跟不上市场的速度的,建议重视营销战略的企业,能够把这一块纳入到企业的数据化运营管理体系内,利用FineBI构建营销主题的分析,做到实时了解市场动态和企业动态。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13