热线电话:13121318867

登录
首页精彩阅读 K近算法之巴氏距离
K近算法之巴氏距离
2014-11-30
收藏

 K近算法之巴氏距离

  • 巴氏距离(Bhattacharyya Distance),在统计中,Bhattacharyya距离测量两个离散或连续概率分布的相似性。它与衡量两个统计样品或种群之间的重叠量的Bhattacharyya系数密切相关。Bhattacharyya距离和Bhattacharyya系数以20世纪30年代曾在印度统计研究所工作的一个统计学家A. Bhattacharya命名。同时,Bhattacharyya系数可以被用来确定两个样本被认为相对接近的,它是用来测量中的类分类的可分离性。
(1)巴氏距离的定义
对于离散概率分布 p和q在同一域 X,它被定义为:
其中:
是Bhattacharyya系数。
对于连续概率分布,Bhattacharyya系数被定义为:
这两种情况下,巴氏距离并没有服从三角不等式.(值得一提的是,Hellinger距离不服从三角不等式)。 
对于多变量的高斯分布 

和是手段和协方差的分布
需要注意的是,在这种情况下,第一项中的Bhattacharyya距离与马氏距离有关联。 
(2)Bhattacharyya系数
Bhattacharyya系数是两个统计样本之间的重叠量的近似测量,可以被用于确定被考虑的两个样本的相对接近。
计算Bhattacharyya系数涉及集成的基本形式的两个样本的重叠的时间间隔的值的两个样本被分裂成一个选定的分区数,并且在每个分区中的每个样品的成员的数量,在下面的公式中使用
考虑样品a 和 b ,n是的分区数,并且被一个 和 b i的日分区中的样本数量的成员。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询