R语言多项式回归
含有x和y这两个变量的线性回归是所有回归分析中最常见的一种;而且,在描述它们关系的时候,也是最有效、最容易假设的一种模型。然而,有些时候,它的实际情况下某些潜在的关系是非常复杂的,不是二元分析所能解决的,而这时,我们需要多项式回归分析来找到这种隐藏的关系。
让我们看一下经济学里的一个例子:假设你要买一个具体的产品,而你要买的个数是q。如果产品的单价是p,然后,你要给y元。其实,这就是一个很典型的线性关系。而总价和产品数量呈正比例关系。下面,根据这个实例,我们敲击行代码来作它们的线性关系图:
下面是它的线性关系图:
现在,我们看到这确实是一个不错的估计,这个图很好的模拟成q和y的线性关系。然而,当我们在做买卖要考虑别的因素的时候,诸如这种商品要买多少,很有可能,我们可以通过询问和讨价赚得折扣,或者,当我们越来越多的买一种具体的商品的时候,我们也可能让这种商品升价了。
这样,我们根据上面的条件,我们在写脚本的时候,我们要注意,总价与产品的数量不再具有线性关系了:
利用多项式回归,我们可以拟合n>1张订单所产生的数据的模型,并且能试着建一个非线性模型。
怎样拟合一个多项式回归
首先,当我们要创建一串虚拟随机数的时候,我们必须总要记得写set.seed(n)。这样做,随机数生成器总能产生同等数目的数据。
预测变量q:使用seq来快速产生等间距的序列:
预测y值:
我们现在产生一些噪音并把它添加到模型中:
对噪声数据进行画图:
下面的这个图根据观测数据进行模拟。其中,模拟的图的散点是蓝色的,而红色线则是信号(信号是一种术语,它通常用于表示我们感兴趣的东西的通常变化趋势)。
我们得出的模型应当是 y = aq + bq2 + c*q3 + cost。
现在,我们用R对此进行模拟。要拟合一个多项式模型,你也可以这样用:
或者:
然而,我们要知道q,I(q^2),I(q^3)存在相关的关系,而这些相关变量很有可能引起某些问题的产生。这时,使用poly()可以避免这个问题,因为它是创建一个垂直的多项式。因此,我喜欢第一种方法:
我们可以使用confint()来获得一个模型的参数的置信区间。
以下是模型参数的置信区间:
现在,我们要作一个拟合VS残差图。如果这是一个拟合效果比较不错的模型,我们应该看不到任何一种模型的模式特征:
整体来说,这个模型的拟合效果还是不错的,毕竟残差为0.8。第一和第三个订单序列的系数,在统计学当中,是相当这样的,这样在我们的意料之中。现在,我们可以使用predict()函数来获得拟合数据以及置信区间,这样,我们可以不按照数据来作图。 下面是预测值和预测置信区间:
在已有的图像中添加拟合线:
添加图例:
下面是它的拟合图像:
我们可以看到我们的模型在数据的拟合方面做的不错,我们也因此感到非常满意。
注意:多项式回归是一种更能强大的工具。可是,我们也可能得到事与愿违的结果:在这个例子中,我们知道我们的信号是使用三次多项式而产生的,然而,当我们在分析实际数据的时候,我们通常对此不知情,因此,正因为多项式次数n大于4的时候会产生过度拟合的情况,我们要在这里注意一下。但你的模型取了噪音而不是信号的时候会产生过拟合的情况;甚至,当你在现有的数据进行模型优化的时候,当你要尝试预测新的数据的时候就不好了,它会导致缺失值的产生。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31