深度解析 | 大数据时代的视频监控
大数据正以最广泛的方式革新我们的生活方式,而作为海量大数据的主要来源之一,视频监控将会挖掘出大数据的真正价值。当前,在大数据的感知计算、数据分析、行业应用三个方面,实用化的安防产品已经出现。
随着市场上视频监控超清化、智能化的软硬件技术迭代,从智慧城市、智能零售到智能家居中所使用的视频监控系统所需技术也在高速创新,产生了海量的视频和图像数据。视频因其信息含量最高、数据量最大、分析运算最复杂,因而成为大数据时代采集、分析、传输、存储、应用最具挑战性的国际技术难题。
大数据是视频智能分析的基础, 分析算法以监控视频为资源,研究监控视频中的目标特征提取、增强与行为分析等关键技术,以期促使监控视频应用模式从事后被动处置向事前主动预防转变。
未来安防大数据通过视频结构化、深度学习、云计算技术等提取人、车、物结构化特征,并以这些数据为基础,采用深度学习神经网络,服务于智能楼宇、智慧商业、智能家居、智慧城市、预测分析等各方面。
安防大数据从提出到现在已经很多年了,虽然出现的产品越来越多,但依然没有真正大规模使用,原因不难分析。
首先,数据整合及管理问题。海量不同来源的大数据,存储于不同的相互独立的系统和设备中,将这些海量数据集中于统一的平台,是安防大数据实施的基础性工作。以高清最基本的720P效果为例,正常监控录像需要的硬盘容量大约为4G~8G/路/时。出于经济性考虑,部分安防厂商尝试降低每小时视频录像,可压缩到3GB左右。以此为例,按一个月时间计算,8路监控容量大约在17T左右。而根据相关规定,公共场所的监控录像至少需要保存一个月(30天)以上,有些地方则更久,由此带来的海量数据存储问题可达P级容量,难度及技术要求之高可想而知。
悠络客通过7年的技术沉淀,针对视频监控行业特点构建了完全弹性可扩展的存储服务,性能高达 6000IOPS以上,但通过自研分布式纠删算法提供亿级并发状况下超低监控存储成本,同时兼顾商业性能和产品价格。
其次,数据的智能分析问题。对于非结构化的图像视频的理解和识别一直是计算机视觉领域的难题,由于很难像人类一样智能地分析出视频中蕴含的丰富内容及对象,我们很多场合下仍然要耗费大量的人力,在海量的视频监控数据中查找有价值的信息。举例来说,在“周克华”案中,为了查找嫌疑人线索,长沙警方投入约两千名民警,花了1个多月的时间反复查看监控录像,视频量相当于83万部电影。虽然基于内容的智能分析在部分安防领域得到了一些研究和产品推广,但目前大部分也仅限于较低层次的应用,例如人脸识别、车牌识别、物体检测、人流统计、周界防范等。大部分智能分析除了受限于算法的发展,更受限于计算能力的发展。智能分析的算法复杂度较高,而且其样本数量庞大,最终产品价格非常高,因此大部分无法真正形成成熟的商业产品。
悠络客在去年依托20万大型商铺用户7年经验沉淀,构架深度学习大数据平台,帮助用户在大数据的商业实际环境中通过视频监控精准、高效地深度挖掘商业价值,特别针对智能巡店、人工智能报警、视频检索、人脸识别大规模的商用,这对大数据处理技术的实时性要求很高。悠络客自研私有商业协议及弹性智能分析框架,逐渐开启大规模数据智能分析的商用大门。
最后,安防数据的应用落地问题。安防数据的智能化是未来的需求方向,但云计算和大数据在应用和推广过程中仍然会面临一系列技术难关的攻克和体系的建立。正因为不同行业不同应用场景的安防数据爆发性的增长与安防视频应用不能处理海量数据之间的矛盾,才需要应用大数据技术去处理海量的视频数据。当然在处理视频数据的时候,需要根据不同的应用类型,如人脸识别、对象识别、区域报警、视频摘要等做很多不同的数据整理算法分析工作,先将非结构化的视频数据转换为计算机能识别的结构化信息,也就是我们常讲的视频解析。结构化后,利用大数据技术对结构化数据进行处理,处理结果再与相关联的应用视频算法并行计算,从而从视频中挖掘出对不同业务场景具有宝贵价值的数据。
悠络客通过自研智能视频算法及海量视频算法合作开放平台,业已形成商用视频云监控完整算法生态链。依托目前国内最大的视频云监控商铺用户量积累,向算法开发者开放智能大数据视频算法开发平台。通过亿级云监控平台灵活的弹性算法开放接口,算法开放者可以在悠络客智能算法平台实现视频算法变现,并可以提供从硬件模组设计至互联网APP产品的全业务链开放合作。安眼云监控合作目前已有超过百家圈内大型合作伙伴加入。
悠络客期望携手海内外各大算法开发者持续快速推动监控摄像头智能化,共赢计算机视觉及监控硬件完整生态圈。
恐惧来自于对未来的无知,内驱未必不能掌控未来。
世界的变化远远超过大家的想象,但未来的趋势、市场的刚需已经向我们招手,要么恐惧等待,要么勇敢应对。监控安防的互联网浪潮将会淘汰颠覆整个行业,而融入安防大数据、深度学习、人工智能的新安防模式在未来将取而代之。传统安防已经受到市场刚需和互联网的巨大冲击,如何适应安防大数据的技术,如何快速适应互联网化合作,如何和各行业进行融合,已成为我们的必然挑战。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13