以汽车行业为载体,通过对具体业务需求的理解与梳理,转化为数据分析问题,进行数据建模,将输出的结果应用到业务中,对业务提供支持(建议,预测,判断等等)。当然了,数据分析与挖掘的过程也是持续地与业务碰撞的过程,这是一个反复建模分析,反复验证解释的过程。此次分享的内容以解决思路为主。
行业知识铺垫
数据挖掘是以业务为核心。因为业务决定了数据分析与挖掘的方向与重心。
每一个行业都有一个所谓的客户生命周期,对于汽车行业来说,客户生命周期是,认知、需求、选车、购车、用车、修车、换车。见下图:
每一个点表示的是,客户在不同的生命周期阶段所获取信息或服务的途径。而我们的目标是在客户生命周期每个阶段均采取针对性措施增加客户价值(为客户增加价值就是增加每一个客户对企业的生命价值)。目标分解:增加客户的生命时间增加每一次与客户互动所得的收入。
具体案例场景(客户流失预警分析)
背景:客户流失的危害:1,盈利损失:客户忠诚度下降,企业利润下降;2,口碑损失:60%新客户参考现有客户的推荐;一个不满的客户扩散范围大5-6倍(与满意客户比);3,成本增加:开发一个新客户成本=维系六个老客户成本。需要回答的问题:哪些客户流失了?什么时候流失?流失客户价值如何?回答以上问题,就可以对即将流失客户做相应的动作给予挽回(数据对业务的支持)。
解决思路
切记:解决问题过程的每一步都要与业务进行碰撞(特征的探索,建立模型时候的参数及区间的设定等等),业务诉求及结论需要数据分析进行支持,数据分析结果(探索的结果)需要业务进行验证解释。
步骤:1,根据业务梳理所需指标;2,了解各字段来源,权重分配与评分方式确立;3,建立模型,验证优化; 4,根据结果提出相应建议(跟踪时间,优惠点等等)(略)
建模思路:1,筛选客户消费频次,金额,推荐等特征,建立客户价值分类模型,2,对比已流失用户与保有用户,寻找显著特征;3,依据筛选出的特征,建立流失预警模型; 4,结合分类模型与流失模型,对用户进行差异性营销。其实这个是两个模型的结合:1.客户价值分析(模型):客户价值区分(根据历史消费行为等记录,测算当前价值,对客户进行区分)。2.流失预警分析(模型):依据客户历史维保周期等信息,及时预警超期未进店客户。
我们从两个维度进行构建客户价值分析(模型)。物质价值(以客户消费的相关数据为依据,反应客户带给企业的货币形式的价值)和情感价值(以客户与车型品牌的互动的相关数据为依据,反应客户对车型品牌的依赖度、忠诚度等非货币形式的价值)。支撑物质价值的字段包括:维保金额,维保频次,最近维保时间等;支撑情感价值的字段包括:年均积分获取次数,年均积分使用次数,年均参加活动次数,投诉记录,推荐购车等等。以上是提取字段,接下来是衍生字段(如年均次数等)(略)
模型是k-means聚类
将客户按价值分为高中低等(具体字段不赘述)。
客户流失模型
就当前时间点而言,最后一次进店时间距当前时间大于等于12个月,标记为流失,最后一次进店时间距当前时间小于12个月,标记为未流失。60%放入训练集,40%放入测试集。模型为决策树。同时我们对已流失客户进行特征提取,分析如下:
流失集中在2年左右的时间。
车龄三年的用户流失比重达25%,车龄五年以上用户已经有近半流失。
同时,流失前也伴随着某些特征:
1. 流失前后有明显的积分获取使用的频次下降。
2. 流失用户金额波动更大,多经历高维保金额
3. 流失用户流失前最后一次进店原因为‘事故车’比率达22%,更换常去经销商比率为15%。
我们将两个模型导出的结果标识(每一条记录都有标识)进行取交集操作,如下图所示
我们会对量化后的指标进行离散化处理(将具体的定量指标定义为定性指标)。下一步就是将数据进行打包,附上针对性的跟踪服务建议,下发经销商,相关人员进行跟踪反馈,因为牵扯面太大(区域,人员等等),对跟踪反馈结果的收集难度很大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10