R语言与区间估计学习笔记
鉴于区间估计的理论与方法可以在任意一本统计学教程中找到,故这里只是单纯的介绍R语言中区间估计的函数与一些自己编写的区间估计函数。
一、单正态总体的参数估计
1、 方差已知时的均值估计
z.test<-function(x,n,sigma,a,u0,alt){
result<-list()
mean<-mean(x)
result$interval<-c(mean-sigma*qnorm(1-a/2,0,1)/sqrt(n),mean+sigma*qnorm(1-a/2,0,1)/sqrt(n))
z<-(mean-u0)/(sigma/sqrt(n))
p<-pnorm(z,lower.tail=F) #函数笔记:lower.tail是真的话,得出的就是X<=x的分位数,为假的话就是用P(X>x)的办法寻找这个值。一般我们用默认的真就可以了
result$z<-z
result$p.value<-p #通过P值判定参数估计效果
if(alt==2)
reslut$p.value<-2*pnorm(abs(z),lower.tail=F)
else
reslut$p.value<-pnorm(z)
reslut#函数笔记:如果函数的结果需要有多个返回值,可以创建一个list(),并返回该对象。也可以用return()函数,设定返回值。但是一个函数的返回的对象只有一个。
}
2、 方差未知时的均值估计
在小样本中,我们通常使用R语言的内置函数t.test()调用格式:
t.test(x, y = NULL,
alternative = c("two.sided", "less","greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)
对于大样本,我们可以使用样本方差代替总体方差,使用z.test()处理
3、 方差的区间估计
chisq.var.test<-function(x,n,a,alt=2,sigma0=1)
{
result<-list()
v<-var(x)
result$interval<-c((n-1)*v/qchisq(1-a/2,n-1,lower.tail=T),(n-1)*v/qchisq(a/2,n-1,lower.tail=T))
chi2<-(n-1)*v/sigma0
result$chi2<-chi2
p<-pchisq(chi2,n-1)
if(alt==2)
result$p.value<-2*min(pchisq(chi2,n-1),pchisq(chi2,n-1,lower.tail=F))
else
result$p.value<-pchisq(chi2,n-1,lower.tail=F)
result
}
这里虽然用fisher引理知道利用卡方分布来处理,但是我们不用chisq.test()来命名这个函数,因为R的内置函数中有chisq.test().如果我们这样命名函数,会导致卡方检验时使用有些许不便。
二、两正态总体参数的区间估计
1、 两方差都已知时两均值差的置信区间
two.sample.sigmaknown<-function(x,y,conf.level=0.95,sigma1,sigma2,alt=c("twosides","less","greater"))
{
n1<-length(x)
n2<-length(y)
x_<-mean(x)-mean(y)
a<-1-conf.level
z1<-qnorm(1-a/2)*sqrt(sigma1/n1+sigma2/n2)
z2<-qnorm(1-a)*sqrt(sigma1/n1+sigma2/n2)
if(alt=="two sides")
x_ +c(-z1,z1)
else if(alt=="less")
x_ -z2
else
x_ +z2
}
注:对于大样本,我们可以以样本标准差代替总体方差来进行区间估计
2、 两方差都未知但相等时两均值差的置信区间
直接使用t.test()函数即可
注:由于对于一般情形估计的方法特别多,可以使用neyman的枢轴量法亦可以使用fisher的信仰推断(通常认为后者较好)。故在此不予介绍
3、 两方差比的置信区间 数据分析培训
仔细阅读方差比的区间估计内容,我们应该注意到,两样本在做方差比估计时应该需要做正态性检验,在R中,你可以使用函数shapiro.test()来实现,该检验对数据的正态性是给与保护的。
使用var.test()函数,调用格式如下:
var.test(x, y, ratio = 1,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)
最后,我想解释一下置信水平的含义,我们所说的置信水平是指用这样的办法对数据进行100次估计,包含真值的次数为100*conf.level。这里的估计是指对不同数据用同样方法进行估计。我们可以编写一个R函数来验证一下:
judge<-rep(0,1000)
for(i in 1:1000){
set.seed(5*i)
if(t.test(rnorm(100000,5,17))$conf.int[1]<=5&5<=t.test(rnorm(100000,5,17))$conf.int[2])
judge[i]<-0
else
judge[i]<-1
}
table(judge)
输出结果:
#judge
# 0 1
#954 46
#从这里来看,估计达到95%的置信水平
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13