数据分析入门方法论
关于数据分析,最重要的是思路和方法论,无论是什么工具,最终的输出无非就是:
有价值的结论(对应分析报告)
有价值的决策过程(对应机器学习模型)
从提出问题入手,例如流量、留存率、新增用户为什么发生变化,练习如何解决问题:
你会提出哪些假设?
如何验证这些假设?(统计方法)
如何清洗和整理数据?(R / Python Pandas / PySpark)
如何可视化?(Excel / FinBI / R ggplot2 / Python matplotlib / Spark Zeppelin)
以怎样的方式展示给非技术人员?(PowerPoint / Tableau / FinBI / iPython Notebook / R Markdown)
如何提出假设?
问题的发现常常是基于常理或者过往经验,所以提出假设的方式大多也是从经验事实出发。比如根据你研究问题的需要,你需要验证哪个需求结论,以及你自己也可以提出基于事实层面上的基本假设。例如用户(UV)上升,但是流量反而减少,UV一般是跟随着流量成正相关的。所以这里不是流量这块除了问题就是用户这边出现新情况。
假设是流量的问题,流量来源于渠道,是否是减少了某些效果差的渠道而专注于一些优质渠道,带来了这样好的结果。
如果是用户问题,用户数的增长是新用户还是老用户带来的,如果都有,各占多少分成。
当然,还得排除一些技术问题,是否是统计口径出现了问题。
如何验证这些假设?
将每一种假设都列举在纸上,每一条都细分,根据主题的类似性做出分类,同一类型的假设,按照可能性依次排列,建立金字塔模型。同一层级划分维度,比如时间、地区等其他属性,构建模型。
如何取数?
SQL是最基本的数据库语言,无论从什么数据库、数据仓库、大数据平台取数,都需要掌握。
Hive和Spark都是基于大数据的,Hive可以将结构化的数据文件映射为一张数据库表,通过类SQL语句快速实现简单的MapReduce统计。
清洗和处理数据
没有高质量的数据,就没有高质量的挖掘结果,有时候分毫之差就会影响结果的判断。原始数据出现不一致、重复、不完整(感兴趣的属性没有值)、存在错误或异常(偏离期望值)的数据。这些都可通过
数据清洗:去掉噪声和无关数据
数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中
数据归约:数据立方体聚集,维归约,数据压缩,数值归约,离散化和概念分层等
可视化&展示
分析的结论要用合适的方式表达,可视化工具是最后一步也是不可或缺的工具。
如果使用常规Excel或者传统报表工具,可以将做成的图表贴至PPT中,涉及Excel的高级功能,就需要学习VBA和数据透视表,但Excel适合已经处理好的成品数据。一旦涉及大数据量或频繁链接数据库,一些带有接口的数据可视化工具或报表工具就比较适合。
最后,从提出问题到输出结论,作为数据分析师的你可能使用各种工具,具体要使用哪一种可根据具体情况而定。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13