数据分析的好习惯
良好的数据习惯,助力数据分析,也让我们养成一个系统的数据分析思维。文章按数据分析的步骤进行讲解数据分析需要养成的良好习惯。文章第一点告诉我们,数据拿到手不忙着直接分析,先对数据的基本特征,以及数据分布有一定了解,后期的建模才有的放矢;文章第二点指出,没有经过验证的数据分析不是完整的分析,模型验证也是分析的一大步骤;文章最后指出,学会讲解你数据分析的结果,不然做得再好,难以被人知晓。详情,请大家自行阅读咯。
1. 分析数据前,一定要尽可能多的进行数据可视化!可视化!可视化!做exploratory data analysis
我上过的几乎所有的应用性的统计课程上的老师都会强调这一点。这个习惯对于数据科学家、统计学家来说估计是最最实用的。
在实际的数据分析过程中,数据可视化可以揭示很多insights:从选择什么样的模型,选择哪些feature建模,到如何分析结果,解释结果等等。
给一个很著名的例子, Anscombe's quartet (安斯库姆四重奏):这个例子包含四组数据。每组数据有11个(x, y)数据样本点。
四组数据样本里x的均值方差全相等,y的均值方差基本相等,x与y的相关系数也很接近。
导致的结果是,四组数据线性回归的结果基本一样。但是,这四组数据本身差别很大。如下图。
如果不做可视化,简单跑一个线性回归,我们只能得到同样的回归线。
数据可视化后,很直观的,左上图是传统的线性回归;右上图需要high-order nonlinear term;左下图x和y是线性关系,但是有outlier;右下图x和y没有线性关系,也有outlier, etc.
每一个数据科学家都应该熟悉各种图的画法,更重要的是,不同的图如何反映不同的信息以及面对不同的数据类型时,应该选择哪种图才能最好的揭示数据里蕴含的信息。
为此,强烈推荐关于R里ggplot包的教程:ggplot2 - Elegant Graphics for Data Analysis
当然另一方面,如果数据量太大维度太高,数据可视化做起来就比较困难。这时候就需要一些经验技巧了。
2. 跑完程序得到模型结果时,一定提醒自己:任务只完成50%,分析,验证,解释结果才是根本
很多时候,我们以为写完code跑完程序就完事了。能做到这一步只能算是一个合格的data analyst。这离数据科学家,统计学家还差远了。
分析,验证,解释结果才是根本! 这个过程更需要data sense, domain knowledge, and statistical expertise.
在拿到结果的时候,一定要多问自己为什么。
模型assumptions是否满足?结果是否make sense?能否解答research question?
特别当结果不符合expectation时,要么有新发现,要么有错误!如果有错,错在哪里?
如果模型假设不成立,如何修正?是否有outliers,如何处理?
或有missing values,missing的机制是啥样的(missing at random, completely at random, or NOT at random)?
是否有multicollinearity?
数据收集是否有bias (如selection bias)?
建模是否忽略了confounding factors (Simpson's paradox)?
3. 养成story-telling的习惯
把分析结果跟你的boss或者collaborator讲!务必让他们明白!这个太需要技巧了, 特别是当你的collaborator是layperson的时候。
不会说只能等着被虐,哪怕analysis做的再好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25