
数据分析的好习惯
良好的数据习惯,助力数据分析,也让我们养成一个系统的数据分析思维。文章按数据分析的步骤进行讲解数据分析需要养成的良好习惯。文章第一点告诉我们,数据拿到手不忙着直接分析,先对数据的基本特征,以及数据分布有一定了解,后期的建模才有的放矢;文章第二点指出,没有经过验证的数据分析不是完整的分析,模型验证也是分析的一大步骤;文章最后指出,学会讲解你数据分析的结果,不然做得再好,难以被人知晓。详情,请大家自行阅读咯。
1. 分析数据前,一定要尽可能多的进行数据可视化!可视化!可视化!做exploratory data analysis
我上过的几乎所有的应用性的统计课程上的老师都会强调这一点。这个习惯对于数据科学家、统计学家来说估计是最最实用的。
在实际的数据分析过程中,数据可视化可以揭示很多insights:从选择什么样的模型,选择哪些feature建模,到如何分析结果,解释结果等等。
给一个很著名的例子, Anscombe's quartet (安斯库姆四重奏):这个例子包含四组数据。每组数据有11个(x, y)数据样本点。
四组数据样本里x的均值方差全相等,y的均值方差基本相等,x与y的相关系数也很接近。
导致的结果是,四组数据线性回归的结果基本一样。但是,这四组数据本身差别很大。如下图。
如果不做可视化,简单跑一个线性回归,我们只能得到同样的回归线。
数据可视化后,很直观的,左上图是传统的线性回归;右上图需要high-order nonlinear term;左下图x和y是线性关系,但是有outlier;右下图x和y没有线性关系,也有outlier, etc.
每一个数据科学家都应该熟悉各种图的画法,更重要的是,不同的图如何反映不同的信息以及面对不同的数据类型时,应该选择哪种图才能最好的揭示数据里蕴含的信息。
为此,强烈推荐关于R里ggplot包的教程:ggplot2 - Elegant Graphics for Data Analysis
当然另一方面,如果数据量太大维度太高,数据可视化做起来就比较困难。这时候就需要一些经验技巧了。
2. 跑完程序得到模型结果时,一定提醒自己:任务只完成50%,分析,验证,解释结果才是根本
很多时候,我们以为写完code跑完程序就完事了。能做到这一步只能算是一个合格的data analyst。这离数据科学家,统计学家还差远了。
分析,验证,解释结果才是根本! 这个过程更需要data sense, domain knowledge, and statistical expertise.
在拿到结果的时候,一定要多问自己为什么。
模型assumptions是否满足?结果是否make sense?能否解答research question?
特别当结果不符合expectation时,要么有新发现,要么有错误!如果有错,错在哪里?
如果模型假设不成立,如何修正?是否有outliers,如何处理?
或有missing values,missing的机制是啥样的(missing at random, completely at random, or NOT at random)?
是否有multicollinearity?
数据收集是否有bias (如selection bias)?
建模是否忽略了confounding factors (Simpson's paradox)?
3. 养成story-telling的习惯
把分析结果跟你的boss或者collaborator讲!务必让他们明白!这个太需要技巧了, 特别是当你的collaborator是layperson的时候。
不会说只能等着被虐,哪怕analysis做的再好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10