数据分析的好习惯
良好的数据习惯,助力数据分析,也让我们养成一个系统的数据分析思维。文章按数据分析的步骤进行讲解数据分析需要养成的良好习惯。文章第一点告诉我们,数据拿到手不忙着直接分析,先对数据的基本特征,以及数据分布有一定了解,后期的建模才有的放矢;文章第二点指出,没有经过验证的数据分析不是完整的分析,模型验证也是分析的一大步骤;文章最后指出,学会讲解你数据分析的结果,不然做得再好,难以被人知晓。详情,请大家自行阅读咯。
1. 分析数据前,一定要尽可能多的进行数据可视化!可视化!可视化!做exploratory data analysis
我上过的几乎所有的应用性的统计课程上的老师都会强调这一点。这个习惯对于数据科学家、统计学家来说估计是最最实用的。
在实际的数据分析过程中,数据可视化可以揭示很多insights:从选择什么样的模型,选择哪些feature建模,到如何分析结果,解释结果等等。
给一个很著名的例子, Anscombe's quartet (安斯库姆四重奏):这个例子包含四组数据。每组数据有11个(x, y)数据样本点。
四组数据样本里x的均值方差全相等,y的均值方差基本相等,x与y的相关系数也很接近。
导致的结果是,四组数据线性回归的结果基本一样。但是,这四组数据本身差别很大。如下图。
如果不做可视化,简单跑一个线性回归,我们只能得到同样的回归线。
数据可视化后,很直观的,左上图是传统的线性回归;右上图需要high-order nonlinear term;左下图x和y是线性关系,但是有outlier;右下图x和y没有线性关系,也有outlier, etc.
每一个数据科学家都应该熟悉各种图的画法,更重要的是,不同的图如何反映不同的信息以及面对不同的数据类型时,应该选择哪种图才能最好的揭示数据里蕴含的信息。
为此,强烈推荐关于R里ggplot包的教程:ggplot2 - Elegant Graphics for Data Analysis
当然另一方面,如果数据量太大维度太高,数据可视化做起来就比较困难。这时候就需要一些经验技巧了。
2. 跑完程序得到模型结果时,一定提醒自己:任务只完成50%,分析,验证,解释结果才是根本
很多时候,我们以为写完code跑完程序就完事了。能做到这一步只能算是一个合格的data analyst。这离数据科学家,统计学家还差远了。
分析,验证,解释结果才是根本! 这个过程更需要data sense, domain knowledge, and statistical expertise.
在拿到结果的时候,一定要多问自己为什么。
模型assumptions是否满足?结果是否make sense?能否解答research question?
特别当结果不符合expectation时,要么有新发现,要么有错误!如果有错,错在哪里?
如果模型假设不成立,如何修正?是否有outliers,如何处理?
或有missing values,missing的机制是啥样的(missing at random, completely at random, or NOT at random)?
是否有multicollinearity?
数据收集是否有bias (如selection bias)?
建模是否忽略了confounding factors (Simpson's paradox)?
3. 养成story-telling的习惯
把分析结果跟你的boss或者collaborator讲!务必让他们明白!这个太需要技巧了, 特别是当你的collaborator是layperson的时候。
不会说只能等着被虐,哪怕analysis做的再好!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26