大数据时代“眼睛”无处不在,想保护个人信息?难!
移动互联网让网络变得无处不在,也在每个人背后增加了许多窥视的眼睛。用户的身份、位置、银行账号……所有这些敏感信息都可以被各形各色的采集者获取,而且大多是合法的。合法获取与滥用、泄漏的风险并不矛盾,在大数据时代,个人信息保护遇到了困境。中国已经进入了真正意义上的移动互联网时代,终端的便携性决定了移动互联网和PC时代互联网本质的不同。手机、Pad、可穿戴设备等便携智能终端与人寸步不离,随着人的移动而移动,网络因而变得无处不在。
移动互联网时代改变了人们的生活习惯和行为模式——今天,人们已经习惯在移动终端上看新闻、聊微信和逛淘宝。
目前,手机在中国的普及率已经超过了百分之百,平均每个人拥有一部以上的手机。如果再加上Pad、可穿戴设备、笔记本电脑,全国范围内可以登录移动互联网的设备数量将是一个天文数字。
同时,OTT的兴起使得互联网业务如雨后春笋层出不穷。这些业务除了获取用户的身份、位置、银行账号等个人信息以外,本身还会产生大量个人信息,比如使用服务的日志信息和内容信息。
移动互联网的无处不在,使得个人信息的收集和利用行为无处不在。海量的智能终端设备和业务应用,则进一步增加了个人信息保护的难度。在移动互联网时代,个人信息的保护正遭受着严峻的挑战。
电信运营商和互联网服务提供者为了向用户提供通信和各种各样的互联网服务,每时每刻都要获取海量的来自终端和用户的信息。
比如,电信运营商需要实时采集每一台接入网络的智能终端的使用行为,包括设备的识别编码、此时此刻的位置和移动轨迹、正在进行的通话或者正在使用的互联网服务、使用的IP地址和浏览网站的IP地址、发生的数据流量等等。不采集这些信息,用户就无法使用通信服务。如果对这些实时数据和历史数据进行适当的分析,便不难发现用户规律性的行动轨迹、经常使用的APP种类、不同终端在位置和时间上的耦合关系等,进而对用户的工作单位、生活习惯、兴趣爱好、职业特点、消费偏好乃至身份关系在一定程度上作出推断。例如一个用户经常使用同花顺的软件,他有很大概率是一个股民。
相较电信运营商而言,互联网服务提供者获取用户信息的途径更加多样化,获取的信息内容也更加丰富。
比如支付宝等第三方支付应用可以获取用户的银行账号和密码,并掌握通过该软件发生的每一笔账务往来信息;一款地图导航软件甚至在用户不使用导航服务时也可以持续获取用户的位置信息,只要用户曾经使用过它并且没有取消提供位置信息的许可。
越来越多的软件要求绑定手机号码、银行账户、身份证号码等个人信息。尽管工信部出台的《电信和互联网服务用户个人信息保护规定》里要求获取用户信息必须以“提供服务所必需”为限,但互联网服务的可拓展性使得“必需”的标准变得动态而宽泛。
实践中,大量的软件都通过征得用户同意来合法获取为提供当前服务所不必要的用户个人信息。比如一个阅读软件也会要求获取用户的位置信息,部分软件甚至还将用户是否提供不必要的个人信息作为能否使用服务的前提条件。
实际上,移动互联网时代能够获取用户个人信息的主体远不止电信运营商和互联网服务提供者。随着人们生活方式和社会组织运行方式的互联网化,通过互联网获取个人信息的主体也越来越多样化。
比如手机的操作系统会将很多信息实时或者定期地提供给它的制造商或者操作系统开发者。
又比如在一个简单的网购行为中,除了电信运营商和网购平台之外,能获取个人信息的至少还包括卖家、物流公司,甚至包括保险公司。
从行业来看,包括电信和互联网、商贸流通、物流配送、金融保险;从企业性质来看,可能包括国企、外企、民企甚至个体工商户。
上面的例子有一个共同的特点,就是这些个人信息都是采集方合法获取、经过用户同意的。其中大部分都是服务所必需的,不获取这些信息将无法为用户提供服务。
然而,在巨大的商业利益诱惑面前,通过第三方插件、恶意程序、非法后门、商业购买等手段非法获取个人信息的情况更是比比皆是、屡禁不止。
可见,在移动互联网时代,个人信息安全保护形势异常严峻。移动互联网时代的生活便利是以个人隐私和财产的安全风险为代价。这是移动互联网发展带来的负外部性,不以人的意志为转移。
应对这种情况,我们首先想到的会是信息的去身份化。很多国家的法律也是主要从去身份化入手规范个人信息利用的。但实践中,去身份化的努力正在政策、业务和技术三个层面受到冲击,其中尤以大数据时代的技术冲击最为深刻、猛烈。
首先,在政策上,手机和部分互联网业务的实名制使得终端和业务与个人身份绑定的基础越来越牢固。
其次,在业务上,第三方支付等应用的兴起绑定了越来越多的银行账号,存款实名制二十多年的实施成果和人们对财产利益的关注,使电信和互联网业务由形式实名迅速转向实质实名。
最后,也是最重要的,大数据时代的海量数据和高度发达的数据分析技术,使得去身份化的信息经过不同分析、对比、组合能够重新恢复身份化,并识别出更多的内容。
这三个方面的变化不仅冲击着去身份化的努力,也从整体上对大数据时代的个人信息保护法律构成了挑战。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21