小谈关联规则的指标应用
你对关联规则知道多少呢?本文从概念和基本指标说起,向你介绍一些指标应用的方法。
关联规则是产品推荐中最常用的算法之一,简单地说,就是通过客户的历史购买信息,挖掘出客户在所有产品间按照某种顺序进行选择的可能性。然而,关联规则中的常用度量指标并不唯一,三四个指标相互联系,如何进行合理的排列组合、找出值得向客户推荐的产品呢?我们将从简化的实际场景跟大家探讨一下究竟如何应用这些指标去做产品推荐。
首先,我们先来了解一下关联规则中所涉及到的一些指标:
1. 产品的期望概率
产品期望概率就是对于任意一个客户来说,购买某一产品的可能性。
如果我们现在有两个产品A和B,那么A、B的期望概率就是所有客户中购买了产品A或者产品B的比例,也就是P(A)和P(B)。
2. 产品的置信度和支持度
置信度是用来衡量客户在选择一个产品(即前项产品)后,又选择另一个产品(即后项产品)的可能性。比如,我们想知道有多少客户选择了A之后又选择了B,其实就是统计学中条件概率,表达式为:
P(B|A)=P(A,B)/P(A)
分母中P(A,B)的意思为同时选择A、B的概率,也就是关联规则中的支持度。从公式中,我们可以看出,置信度就是支持度与产品A(前项产品)期望概率的比值。
3. 产品的提升度
那么,是不是产品的置信度越高,我们就越应该给买了产品A的客户推荐产品B呢?
答案并非如此。举个例子来说,如果产品B是一个特别大众的产品,几乎所有客户都会购买,而产品A却是一种小众产品,只有一小撮人会购买,那么,置信度
P(B|A)=P(A,B)/P(A)
会无限接近于1,相应的支持度也会很高。也就是说,虽然购买了产品B客户客几乎都会购买产品A,但产品B的高购买率并非受益于产品A,不是因为客户先购买了产品A带来的提升。
所以,为了测量先购买某一产品对另一产品购买度的提升比例,关联规则中提出了提升度这一指标,表达式为置信度与后项产品期望概率的比值,即
P(B|A)/P(B)=P(A,B)/(P(A)*P(B))
只有当提升度大于1,才能说明购买过产品A的客户比任意一个客户有更高可能性去购买产品B,才有推荐的必要性。
通常在关联规则中,我们会采用Apriori算法去计算以上指标,篇幅所限,具体算法就不再细说了,感兴趣的读者可以寻找相关资料。下面就展示一个通过算法得到的规则表吧,来看看业务中会用到的信息究竟长什么样吧:
需要注意的是,在算法中我们已经自行排除了一些出现概率较低的规则,一般会将产品同时发生率和置信度根据数据本身的情况设定一个阈值。
但是,有了以上几个指标数据之后,我们又要如何给客户进行产品推荐呢?实际应用中,我们可以从两个方向出发:
1. 以规则为导向
举个例子,现在有一个客户进入店中,我们通过历史信息知道了他曾经购买过何种产品,接下来我们要如何给他做推荐呢?
以规则为导向的意思是说,通过筛选购买前项产品的客户群,来推荐其购买右边的产品。这里其实需要解决两个问题,一是客户购买了多种产品,那要针对哪一种种前项产品做推荐呢?二是对于同一前项产品,又该推荐何种后项产品呢?
解决这两个问题也就是要解决两个顺序,即前项产品的推荐排序和相同前项产品下的后项产品排序。前项产品推荐排序方面,建议以前项产品的期望概率出发,从大到小进行排序。当确定了前项产品后,推荐后项产品的顺序则应该综合考虑提升度和置信度。由于提升度的大小是由置信度(分母)和后项期望概率(分子)的比值决定,所以会存在由于后项期望概率(分子)过小、而导致提升度反而比较大的情况。因此,在后项推荐的时候,如果一定要有个先后顺序,则是先筛选出提升度大于1的规则,随后再根据置信度的大小进行排序。
2. 以产品为导向
以产品为导向,意味着你有一款待销的产品,需要通过回溯规则的左边,找到最有可能购买的客户。这种情况下,我们已经确定了后项期望概率,就可以同样通过提升度大于1的规则,随后在根据置信度的大小进行排序,找到推荐关系比较强的产品的购买者。
以上简单介绍了关联规则在实际场景中的指标应用问题,希望对大家能够有所启发。当然,关联规则使用中,有些还会结合分群客户协同过滤的方法,有机会再和大家详细聊聊。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31