京公网安备 11010802034615号
经营许可证编号:京B2-20210330
二分类模型中,如何应对分类自变量取值过多
这是个信息无限充裕的年代,是个数据爆炸的年代,也是数据过载的年代。大数据之大,不仅在于体量巨大,更在于结构和内容的复杂,因此如何处理好数据一直是我们工作少为人知、却也无法忽视的重点。本期,我们就以二分类模型中自变量取值过载为例,给大家讲讲应对之道~
在二分类建模过程中,难免会遇到分类自变量取值过多的情况,比如用来表示观测值地域属性的自变量,在我国即使选用省级层面的信息,最多也可达31种取值。处理分类自变量时,最常用的方法是将其拆分为若干取值为“0”和”1”的二分变量,这样就会导致模型的维度过多,自由度降低,不仅对建模样本提出了更高的要求,还增加了模型参数估计的难度和模型的训练时间。因此,今天我们基于自己的经验,在这里谈谈对这个问题的处理思路。
一、利用聚类算法进行类别合并
既然这个问题是分类变量取值过多导致的,那么,最直接的解决思路显然就是对类别进行合并。当然,合并不能是主观随意的,而应该是基于定量分析之后的结果。为了便于叙述,不妨假设某个分类型自变量X有A1,A2,…,An等取值,我们可以计算出每个类别中实际的Y=1比例。具体计算过程如下表所示:
然后就可以利用聚类分析来进行类别的合并了。第一种思路是采用系统聚类法,将A1,A2,…,An看做聚类的对象,各个类别的Y=1比例作为指标进行聚类,即有n个聚类对象,1个聚类指标。聚类结束之后,将聚为一类的类别进行合并。当然,究竟聚为几类最合适,还可以采用一些指标来辅助确定,比如SAS软件中的R-square、半偏态R-square以及伪F统计量等,都可以用来辅助确定类的个数。
第二种思路就是采用有序样品的聚类,长期关注我们公众号的小伙伴可能还记得,我们在前期的文章中曾经利用这个方法来进行数据离散化,这里我们利用这个方法进行类别的合并,处理起来也比较简单,将各个类别按照Y=1比例从小到大的顺序进行排列,再利用Fisher算法将Y=1比例相近的类别进行合并。这样做最大的好处是我们可以根据信息损失,得到最优的类别个数和相应的最优合并方法。
二、利用决策树进行类别合并
利用决策树进行类别合并时,首先需要选择一个衡量分类变量之间相关性或影响程度的指标,我们可以使用在前期的文章中曾经介绍过IV信息量或一致性比率。这种类别合并的基本步骤可以表示为:
1、将各个类别按照Y=1比例从小到大的顺序进行排列,并将所有类别视为一个组;
2、利用IV信息量(或者一致性比率),找出最优的二元分割方法,使得被选中的分组方案是所有分组方案中预测能力最强的,这样将所有类别分成了两组,不妨假设为组1和组2;
3、将组1按照上一步同样的步骤分为组11和组12,组2分为组21和组22。再利用IV信息量比较组1和组2的最优分组的预测能力大小,取预测能力最强的组进行分裂,这样将所有类别分成了三组,不妨假设为组1、组2和组3。
然后,按照第3步的做法不断分裂下去,直到分裂形成的组数达到预先设定的个数为止。如果因变量是二分变量,可以使用IV信息量或一致性比率;如果因变量的取值个数大于2,那么就可以使用一致性比率来进行预测力的判断。《SAS编程与数据挖掘商业案例》一书种提供了一份观测值为32264的数据集,其中因变量是二分变量,有一个分类自变量LOCATION有19种可能的取值,我们利用这里介绍的算法对变量LOCATION进行合并,将合并后的类别个数设定为5,下图是分裂的具体过程:
其中原始的19个变量记为B1,B2,…,B19,经过4次分裂,19个取值最后被分为5个组,圆圈里面的表示的就是这5个组里面包括的原始变量名称,每个方框下面对应的数字表示该步分裂所对应的顺序。由于采用的是自上而下的分裂算法,很显然,分裂后保留的组数越多,算法所耗费的时间也就越长。
三、WOE编码
WOE就是所谓的证据权重(weight of evidence),该方法计算出分类变量每一个类别的WOE值,这样就可以用这个WOE值组成的新变量来替代原来的分类变量。由于新变量是数值型变量,因此该方法实际是将分类变量转化为数值变量,不用再生成虚拟变量,避免了由此产生的维度过多的问题。我们用下面的表格来表示WOE值的计算过程:
注:LN表示自然对数函数。
从上表可以看出,WOE值实际上是该类别中Y=1与Y=0比例之比的自然对数。需要注意的是,该表的Y=1比例与上一张表的Y=1比例计算方式是不一样的,上一张表的Y=1比例是该类别中Y=1观测个数与该类别所有观测个数之比,而这一张表示该类别Y=1观测个数与样本中所有Y=1观测个数之比。WOE编码法在利用logistic模型建立信用评分卡时应用较多。
四、小结
比较而言,前两种类别合并的方法,虽然减少了类别个数,但是仍然需要生成若干二分变量;当使用一致性比率进行预测力判断时,第二种方法也适用于多分类模型;第三种方法将分类变量直接转化为数值型变量,模型简洁,易于操作。但是如果出现类别中Y=1或者Y=0个数为零的情况,将导致WOE值无法计算。因此,也可以将两种方法结合起来,先进行简单的类别合并,避免Y=1或者Y=0个数为零的情况,然后再进行WOE编码。
总之,数据的世界是日益复杂的,大数据尤其如此。在面对繁复的海量数据时,我们需要很多方法和经验,将数据转化成更简洁有效的信息;希望大家能从本文中得到一点启发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04