热线电话:13121318867

登录
首页精彩阅读大数据分析方法及其存在的问题
大数据分析方法及其存在的问题
2016-12-01
收藏

大数据分析方法及其存在的问题

目前大数据分析的重要内容是可视化分析,通过集成交互可视化和自动化分析,从而提升大数据分析方法的应用效果。

从大数据分析系统架构层面看,整个大数据分析具有9层架构体系,尤其是其中的复杂结构处理技术、平台应用标准规范和虚拟化接入技术以及其知识服务交易模型和大数据知识服务质量评价体系等共同组成了大数据分析服务的关键技术应用机制。在传统数据分析过程中,其更多针对的是原始数据进行抽样、过滤,并结合数据样本分析,从而探究其中存在的具体规律和特点。因此,其中最重要的特点在于通过使用复杂算法能够从体系化的数据中寻找到更多有价值的数据信息。在当前计算水平和存储能力大大提升过程中,大数据分析所面临的对象是整个动态变化的数据群体,而不是客观不变的数据样本,因此其大数据分析的应用重点从高效解决收集到的信息入手,只有提升数据运算的准确性,才能够满足大数据分析的应用要求。

大数据分析过程中存在的问题

正是因为当前大数据时代的迅猛发展,整个大数据分析过程中存在着一系列问题和不足,其大大制约了大数据分析的应用效果,其问题集中反映为:

首先,想要实现精准的大数据分析,需要解决其大数据存储问题,与以往相比,大数据时代,其整体数据存储远远超过了传统数据时代,而想要实现其数据分析目的,就必须完善数据存储。而目前在大数据时代,整个数据存储并不是静态的,而是动态发展的,因此只有探索完善适应大数据存储的具体机制,才能实现其最终目的。

其次,大数据质量不高,分析利用难度大。因此,需要探究增强数据可用性的方法。此外,大数据分析的核心在与数据建模。但是当前由于建模水平较差,暂时很难结合大数据时代特征,完善建模应用。

最后,缺乏专业的大数据分析工具。在传统数据分析过程中,经常使用 SPSS 等软件进行数据分析,但是在大数据时代,缺乏能够完善有效的数据分析工具。因此,结合大数据时代特征,构建大数据分析平台,对于整个大数据时代应用发展来说,极为必要。


数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询