如何玩转互联网金融+大数据+征信
随着P2P监管的加强,前两年热炒的互联网金融逐渐回归理性。人们开始用清醒的头脑,重新审视这个“新事物”。越来越多的人开始认可互联网金融的金融本质。
从前年底开始,征信仿佛一夜之间进入到人们的视野。从第一批个人征信牌照的发放在即,到企业征信备案的收紧,征信成为金融圈一个新的热点。更有很多人认为,征信将撬动一个新的万亿市场。大数据,依然在升温,2015年的9月更是达到了一个新的高度,上升为国家战略,一时间威风八面。很多事情如果不沾上大数据的光,都不好意思出来说。不知道什么时候,有聪明人将两个热点合二为一,产生了“大数据征信”的名词,并讯速地将其推广。
互联网金融、大数据征信于是就成了近两年最亮丽的风景。然而,互联网金融的本质是金融,那么互联网给金融带来了什么?互联网金融与传统金融有什么区别?征信,真的需要大数据吗?大数据在征信里到底起了什么作用?什么是互联网金融越来越多的人认识到互联网金融的本质是金融,这很好,说明大家都明白起码互联网金融不完全等于P2P。但是在互联网金融里的“互联网“又是什么呢?它与传统金融最根本的区别在于什么?互联网金融跟传统金融还是有一些本质的区别。它并不是一个简单地衍生品,而是一次革命!是互联网金融是金融的互联网化。
金融的互联网化,再具体地说,就是金融的碎片化,金融的精细化,便捷化。这,才是互联网金融的核心。如果你简单认为余额宝当年的那一场绚丽的演出只为业界带来了P2P的模式,那就太浅薄了。P2P只是表象,余额宝最大的贡献是开启了金融产品互联网化大幕!众所周知,我国是银行大国,而非金融大国。金融产品匮乏,缺乏细分,新产品开发的周期过于缓慢。互联网金融带给大家的是快捷的市场反应,丰富的细分产品。这也是未来银行所必须具备的能力。互联网为金融的变革做好了外围环境条件的准备。这个准备,就是大数据,就是征信。大数据随着越来越多的人关注大数据,大数据也被越来越多的人误解,滥用。其实大数据是一个特指,并不是数据多到一定程度就是大数据了,更不是有数据就是大数据。我们现在称“大数据”一般是指两个概念,一个是来自于互联网的海量数据,其特点是海量、维度多,非结构化和结构化数据并存;另一个是对海量数据的处理技术。因为依靠传统的数据处理技术,无法满足对海量数据秒级快速处理的需求(应用的需求,亚马逊、LinkedIn是代表),所以必须要有一种新的针对这一需求的处理技术,我们称之为大数据技术。
大数据最根本的作用也随之有两个,了解你的客户和在一些领域引入新的数据处理办法。目前第一个“大数据”的含义已经被扩展,跨越了互联网的界限,引入了行业的数据。通过将不同渠道,不同维度的数据打通,你将可以非常清晰地勾勒出你的用户的画像。基于对用户的画像,你就可以更好地为客户提供差异化的服务;就可以更好地了解客户,从而为其提供更精准更高级的无抵押信用贷款。另一方面,大数据的处理技术也有可能在一些传统的金融领域,尤其是风控领域发挥作用。大数据的某些技术,本身就不是建立在统计学的基础上,有可能在缺乏样本的领域里发挥作用。当然,并不是说大数据完全不需要数据的训练,只是可能可以在缺乏大样本数据环境的情况下,利用其他数据来弥补缺乏数据的不足,不失是一个新的手段。无论是大数据,还是大数据的处理技术,都直接或者间接地指向了一个环节,征信。征信现在很多人一提征信总喜欢加一个修饰词,“大数据征信”。仿佛担心如果不加上“大数据”份量就不够。征信就是征信,是一门严谨的金融科学。是为金融风控过程中揭示金融风险而设。传统征信是建立在信贷历史记录的基础上,利用统计学的模型来展开的。虽然ZestFinance提出了大数据的征信方法,但迄今为止,还没有一个令人信服的数据表明,这一方法是行之有效的,是成熟的。虽然大数据可以掌握一个用户很多方面的信息,但是只有金融属性的数据,对用户的金融行为判断才会有意义。大数据确实可以为金融行业带来很多变化,也为金融的互联网化,碎片化,提供了保障。
虽然,大数据在今天,在金融领域还是补充,但相信在未来的日子里,它将进一步渗透,走出一条创新的路。征信将融入大数据进一步细分,场景化的征信会更适合新市场的需求。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28