
R中大型数据集的回归
众所周知,R语言是一个依赖于内存的软件,就是说一般情况下,数据集都会被整个地复制到内存之中再被处理。对于小型或者中型的数据集,这样处理当然没有什么问题。但是对于大型的数据集,例如网上抓取的金融类型时间序列数据或者一些日志数据,这样做就有很多因为内存不足导致的问题了。
这里是一个具体的例子。在 R 中输入如下代码,创建一个叫 x 的矩阵和叫 y 的向量。
如果用内置的 lm 函数对 x 和 y 进行回归分析,就有可能出现如下错误(当然,也有可能因为内存足够而运行成功):
本文代码运行的电脑的配置是:
CPU: Intel Core i5-2410M @ 2.30 GHz
Memory: 2GB
OS: Windows 7 64-bit
R: 2.13.1 32-bit
在 R 中,每一个 numeric 数 占用 8 Bytes,所以可以估算到 x 和 y 只是占用 5000000 7 8 / 1024 ^ 2 Bytes = 267 MB,离运行的电脑的内存 2 GB 差很远。问题在于,运行 lm() 函数会生成很多额外的变量塞满内存。比如说拟合值和残差。
如果我们只是关心回归的系数,我们可以直接用矩阵运算来计算 β^ :
在本文运行的计算机中,这个命令成功执行, 而且很快(0.6秒)(我使用了一个优化版本的 Rblas, 下载)。然而,如果样本变得更加大了,这个矩阵运算也会变得不可用。可以估算出,如果样本大小为 2GB / 7 / 8 Bytes = 38347922 ,x 和 y 自己就会占用了全部内存,更不要说其他计算过程中出现的临时变量了。
怎么破?
一个方法就是用数据库来避免占用大量内存,并且直接在数据库中执行 SQL 语句等。数据库使用硬盘来保存数据,并且执行 SQL 语句时只是占用少量内存,所以基本上不用过于担心内存占用。不过有得有失,要更加关注完成任务所占用的时间。
R 支持很多数据库,其中 SQLite 是最轻量级和简单的。有一个 RSQLite 包,允许用户在 R 中对 SQLite 进行操作。这些操作包括了对 SQLite 数据库进行读写,执行 SQL 语句和在 R 中获取执行结果。所以,如果我们能够把需要的算法“翻译”到 SQL 语句版本,数据集的大小只受限于硬盘的大小和我们能够接受的执行时间。
采用上面的那个例子,我这里说明我们会怎样用数据库和 SQL 语句来对数据集进行回归。首先我们要把数据塞到硬盘上面。
上述代码有很多 rm() 和 gc() ,函数,这些函数是用来移除没有用的临时变量和释放内存。当代码运行完毕的时候,你就会发现在你的工作空间中有一个 320M 左右的 regression.db 文件。然后就是最重要的一步了:把回归的算法转化为 SQL。
我们有
β^=(X′X)−1X′y
而且,无论 n 有多大,X′X 和 X′y 的大小总是 (p+1)∗(p+1) 。如果变量不是很多,R 处理矩阵逆和矩阵乘法还是很轻松的,所以我们的主要目标是用 SQL 来计算 X′X 和 X′y 。
由于 X=(x0,x1,…,xp),所以 X′X 可以表达为:
$$%
而每一个矩阵元素都可以用 SQL 来计算,比如说:
我们可以用 R 来生成 SQL 语句,然后把语句发送到 SQLite :
可以看出差别是舍入误差导致的。
以上计算用了大约 17 秒,远远超出矩阵运算的时间。不过它也几乎没有占用额外的内存空间。实际上我们采用了“时间换空间”的策略。此外,你可能还发现,我们可以通过多个对数据 库的连接同步地计算 sum(x0*x0), sum(x0*x1), ..., sum(x5*x5) ,所以如果你有一个多核的服务器(而且硬盘足够快),你还可以通过适当的安排大量地减少运行时间。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10