
R中大型数据集的回归
众所周知,R语言是一个依赖于内存的软件,就是说一般情况下,数据集都会被整个地复制到内存之中再被处理。对于小型或者中型的数据集,这样处理当然没有什么问题。但是对于大型的数据集,例如网上抓取的金融类型时间序列数据或者一些日志数据,这样做就有很多因为内存不足导致的问题了。
这里是一个具体的例子。在 R 中输入如下代码,创建一个叫 x 的矩阵和叫 y 的向量。
如果用内置的 lm 函数对 x 和 y 进行回归分析,就有可能出现如下错误(当然,也有可能因为内存足够而运行成功):
本文代码运行的电脑的配置是:
CPU: Intel Core i5-2410M @ 2.30 GHz
Memory: 2GB
OS: Windows 7 64-bit
R: 2.13.1 32-bit
在 R 中,每一个 numeric 数 占用 8 Bytes,所以可以估算到 x 和 y 只是占用 5000000 7 8 / 1024 ^ 2 Bytes = 267 MB,离运行的电脑的内存 2 GB 差很远。问题在于,运行 lm() 函数会生成很多额外的变量塞满内存。比如说拟合值和残差。
如果我们只是关心回归的系数,我们可以直接用矩阵运算来计算 β^ :
在本文运行的计算机中,这个命令成功执行, 而且很快(0.6秒)(我使用了一个优化版本的 Rblas, 下载)。然而,如果样本变得更加大了,这个矩阵运算也会变得不可用。可以估算出,如果样本大小为 2GB / 7 / 8 Bytes = 38347922 ,x 和 y 自己就会占用了全部内存,更不要说其他计算过程中出现的临时变量了。
怎么破?
一个方法就是用数据库来避免占用大量内存,并且直接在数据库中执行 SQL 语句等。数据库使用硬盘来保存数据,并且执行 SQL 语句时只是占用少量内存,所以基本上不用过于担心内存占用。不过有得有失,要更加关注完成任务所占用的时间。
R 支持很多数据库,其中 SQLite 是最轻量级和简单的。有一个 RSQLite 包,允许用户在 R 中对 SQLite 进行操作。这些操作包括了对 SQLite 数据库进行读写,执行 SQL 语句和在 R 中获取执行结果。所以,如果我们能够把需要的算法“翻译”到 SQL 语句版本,数据集的大小只受限于硬盘的大小和我们能够接受的执行时间。
采用上面的那个例子,我这里说明我们会怎样用数据库和 SQL 语句来对数据集进行回归。首先我们要把数据塞到硬盘上面。
上述代码有很多 rm() 和 gc() ,函数,这些函数是用来移除没有用的临时变量和释放内存。当代码运行完毕的时候,你就会发现在你的工作空间中有一个 320M 左右的 regression.db 文件。然后就是最重要的一步了:把回归的算法转化为 SQL。
我们有
β^=(X′X)−1X′y
而且,无论 n 有多大,X′X 和 X′y 的大小总是 (p+1)∗(p+1) 。如果变量不是很多,R 处理矩阵逆和矩阵乘法还是很轻松的,所以我们的主要目标是用 SQL 来计算 X′X 和 X′y 。
由于 X=(x0,x1,…,xp),所以 X′X 可以表达为:
$$%
而每一个矩阵元素都可以用 SQL 来计算,比如说:
我们可以用 R 来生成 SQL 语句,然后把语句发送到 SQLite :
可以看出差别是舍入误差导致的。
以上计算用了大约 17 秒,远远超出矩阵运算的时间。不过它也几乎没有占用额外的内存空间。实际上我们采用了“时间换空间”的策略。此外,你可能还发现,我们可以通过多个对数据 库的连接同步地计算 sum(x0*x0), sum(x0*x1), ..., sum(x5*x5) ,所以如果你有一个多核的服务器(而且硬盘足够快),你还可以通过适当的安排大量地减少运行时间。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20