浅谈数据挖掘在财务数据分析中的应用
利用数据挖掘技术的优势,通过建立预测分析模型,可以有效提高企业财务分析和预测能力。
(一)投资决策分析能力
投资决策分析是一个复杂的过程,不仅要考虑投资项目的内在环境,还要考虑企业所处的各种外在环境;不仅要考虑企业的投资回报率、回收期,还要考虑企业在营运过程中的现金流情况。要对一个投资项目的可行性进行分析,必须要借助大量的统计工具和模型。而数据挖掘技术可以及时动态的提供行业基本状况以及投资环境等大量的数据资料,通过这些数据资料建立起来的模型,可以挖掘出对企业投资决策有用的信息,保证投资决策的正确性和有效性。
(二)筹资决策分析能力
筹集资金量的多少、筹资渠道、筹资方式、筹资期限都是企业解决筹资过程中的重要环节。为了更好更高效地筹集资金,企业必须分析企业所处的各种政治、法律、金融及技术等环境,了解企业所需筹集资金的用途及性质,比较各渠道筹集资金的成本及风险。企业利用数据挖掘技术,运用回归分析模型预测企业所需筹集资金的量,还可以利用关联模型等对各种渠道及方式进行分析,挖掘最适合企业筹集资金的渠道、方式和期限,力争以最小的成本及风险筹集到企业所需要的资金。
(三)预测分析能力
预测一般建立在大量的历史数据和适当的模式基础上,数据挖掘能自动在大型数据库中寻找预测性信息,利用趋势分析、时间序列分析等方法,建立对如销售、成本、资金等的预测模型,科学准确地预测企业各项指标,为决策提供依据。
(四)产品销售分析能力
产品销售是企业最终实现利益回归的方式,但不同产品可能带来不同收益。企业要不断发展,必须实时分析不同产品在整个市场的趋势。对那些只能给企业带来短期收益的产品,不盲目扩大产品生产线,不积压过多原材料,不要过多采取赊销方式;而对那些具有长远市场潜力的产品,不仅要多培养长期客户群,建立客户的信息数据库;同时要通过数据挖掘技术的相关模型,如趋势分析等模型了解该产品前期原材料等的预期市场趋势,以加强材料库存的管理,减少由于产品成本的变化给企业带来的损失。
(五)客户分析能力
客户关系管理是提升企业竞争优势的有力武器。企业通过对客户数据进行挖掘,进行关联分析客户对企业的价值贡献、忠诚度、流失等信息,掌握客户的行为规律,并根据这些规律进行分类,找出最有价值和具有潜力的客户群,对这些重要客户要紧密追踪,要多角度、全方位地尽量为他们提供所需要的服务,减少潜在长期客户的流失。另外,企业通过数据库中客户数据的分析,能挖掘出客户真实状况以判断是否进行赊销,降低企业自身的风险。
(六)财务风险分析能力
筹资投资过程中的金融风险、产品销售过程中坏账的风险,经营过程中行业政策改变的风险,都是企业在运营过程中现实存在的。如果不注意对这些风险的分析,任何阶段小小的风险都可能使企业处于危险的境地。企业利用数据挖掘技术,根据各个阶段不同特点,建立不同的风险预测模型,可以提前对风险进行预测,加强各个阶段的风险防范和控制。
应用数据挖掘技术进行财务分析的方法步骤:
(一)确定财务分析的对象
定义财务分析的对象,根据财务分析的目的选择合适的分析模型,采用相应的数据挖掘方法。
(二)数据选取、收集
数据选取的目的是确定目标数据,根据用户的需要从原始数据库中选取相关数据或样本。数据收集是数据挖掘的前提,数据可以来自于现有的事务处理系统,也可以从数据仓库中得到。
(三)数据整理
数据整理是对选出的数据进行再处理,检查数据的完整性及一致性,消除噪声及与数据挖掘无关的冗余数据,根据时间序列和已知的变化情况,利用统计等方法填充丢失的数据。数据整理包括以下内容:
1.数据选择。搜索所有与财务分析对象有关的内部和外部数据信息,根据财务分析的目的从中选择出适用于数据挖掘的数据。
容理解的基础上,寻找依赖于发现目标的表达数据的有用特征,以缩减数据规模,从而在尽可能保持数据原貌的前提下最大限度地精简数据量。
3.数据转换。选取合适的知识发现算法,选择合适的模型和参数,建立分析模型,并将数据转换成为该分析模型。
(四)数据挖掘
对所得到的经过转换的数据进行挖掘。除了选择、完善合适的挖掘算法外,其余一切工作都能自动地完成。
(五)模式评估
数据挖掘的结果有些是有实际意义的,而有些是没有实际意义的,或是与实际情况相违背的,这就需要进行评估。评估可以根据用户多年的经验,对在数据挖掘步骤中发现的模式进行评估,也可以直接用实际数据来验证模型的正确性,进而调整挖掘模型,再次进行挖掘。
(六)分析决策
数据挖掘的最终目的是辅助决策。将发现的知识以用户能理解的方式呈现给用户,决策者可以根据数据挖掘的结果,结合实际情况,将分析所得到的知识集成到财务分析系统中,做出最终决策。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13