京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据清洗是整个数据分析过程中一个非常重要的环节。数据清洗的目的有两个,第一是通过清洗让数据可用。第二是让数据变的更适合进行后续的分析工作。本篇文章将介绍几种简单的使用R进行数据清洗的方法。
读取并创建数据表
首先将数据读取到R中,并创建名为loan的数据表。后面我们将对这个数据表进行清洗。
#读取并创建数据表
loan=data.frame(read.csv('loan.csv',header = 1))
使用head函数查看数据表的前5行。
#查看数据表前5行
head(loan)

数据清洗
重复值
使用duplicated函数查看数据表中的用户ID列是否存在重复值,duplicated函数返回该字段每一行的检查结果,重复的标记为TURE,不重复的值标记为FALSE。在下面的结果中可以看到数据表的用户ID列最后四个值为重复值。
#查看特定列是否有重复
duplicated(loan$member_id)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
对于包含重复值的数据表,可以使用unique函数提取数据表中的唯一值,并用唯一值覆盖原有数据,达到去除重复值的目的。下面的代码提取了loan数据表中的唯一值,并重新赋给loan数据表。此时loan数据表中就不包含重复值了。
#删除重复值,返回唯一值列表
loan=unique(loan)
去除完重复值后,再次使用duplicated函数查看,返回的结果中都为FALSE,已经没有重复值了。
#查看重复值
duplicated(loan$member_id)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
查找空值
使用is.na函数查看数据表中的空值,和重复值一样,空值在结果中显示为TURE,非空值显示为FALSE。下面是对loan数据表检查空值的代码和结果。
#查找数据表中的空值
head(is.na(loan),n = 10)

除了对数据表查看空值以外,还可以对表中特定的列检查空值,在is.na函数中输入表和列的名称,就会看到该列中空值的情况,TRUE为空值,FALSE为非空值。
#查看特定列中的空值
is.na(loan$loan_amnt)
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
填充空值
对于数据表中的空值,有两种处理方法,第一种是用0进行填充,第二种是删除包含空值的行。下面是第一种方法,将loan表中的空值填充为0.
#将空值填充为0
loan[is.na(loan)] <- 0
[/code]
第二种方法使用 删除loan表中包含有空值的行。
[code lang="r"]
#删除空值所在行
loan<-na.omit(loan)
[/code]
<h2>
大小写转换</h2>
英文字母的大小写和字符间的空格是影响数据统计的一个常见原因。例如下面我们使用table函数对数据表按贷款状态进行汇总时,相同的贷款状态由于大小写和空格被分割成多种状态。造成统计数据不可用。下面我们对这个字段进行大小写转换和去除空格的清洗。
#按贷款状态进行汇总
table(loan$loan_status)
Fully Paid charged off Charged Off Charged Off Current fully paid fully Paid Fully paid Fully Paid
1 1 8 1 1 2 1 1 15
将英文字母转换为小写的函数是tolower,下面的代码中我们将贷款状态列统一转化为小写字母,然后重复赋给数据表中的贷款状态列。
#将贷款状态转换为小写
loan$loan_status=tolower(loan$loan_status)
转化完成后,再次使用table函数按贷款状态进行汇总,下面下面的结果中可以看到分类从之前的8个减少到了4个,并且的分类都为小写字母。下面我们在继续进行空格清洗。
#按贷款状态进行汇总
table(loan$loan_status)
fully paid charged off charged off current fully paid
1 9 1 1 19
去除两侧空格
去除字符间的空格比大小写转换要复杂一些,首先我们将需要去除空格的列单独拿出来
#提取贷款状态列
loan_status=as.vector(loan$loan_status)
然后使用trim函数去除该列中的空格,trim函数在raster包中,因此需要先安装raster的包。
#安装raster包
install.packages('raster')
安装完成后加载raster包。
#加载raster包
library(raster)
加载完raster包后,使用trim函数去除贷款状态字符中的空格。
#去除贷款状态字段中的空格
loan_s=trim(loan_status)
使用去除完空格的贷款状态覆盖数据表中原有的贷款状态列。
#覆盖原有贷款状态字段
loan$loan_status=loan_s
去除完空格后,再次按贷款状态进行汇总,结果从5个减少为3个,恢复正常。
#按贷款状态进行汇总
table(loan$loan_status)
charged off current fully paid
10 1 20
查看数据类型
使用typeof函数可以查看数据表中字段的数据类型,下面的代码对数据表中的用户收入字段进行数据类型查看,结果为double型。
#查看用户收入字段的数据类型
typeof(loan$annual_inc)
[1] "double"
更改数据类型
使用as.integer函数将用户收入字段的数据类型由double型转化为integer型。
#将用户收入字段更改为integer
loan$annual_inc=as.integer(loan$annual_inc)
转化后再次使用typeof函数查看数据类型,此时已经显示数据类型为integer。
#查看用户收入字段
typeof(loan$annual_inc)
[1] “integer”
数据预处理
数据分列
很多时候我们需要对一列数据进行分裂处理,在excel中直接使用分列功能就可以完成,在R中,使用strsplit函数也可以实现。首先将需要分列的列单独提取出来。这里我们需要对贷款期限进行分裂。
#提取贷款期限字段
term=as.vector(loan$term)
[1] ” 36 months” ” 60 months” ” 36 months” ” 36 months” ” 60 months” ” 36 months” ” 60 months” ” 36 months” ” 60 months” ” 60 months”
[11] ” 60 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months”
[21] ” 60 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 60 months” ” 36 months” ” 36 months”
[31] ” 36 months” ” 60 months” ” 36 months” ” 36 months”
然后使用strsplit函数对贷款期限进行分列,分列的依据是空格。具体代码和分列的结果如下所示。
#使用空格对字段进行分裂
strsplit(term,' ')
[[1]]
[1] “” “36” “months”
[[2]]
[1] “” “60” “months”
[[3]]
[1] “” “36” “months”
除了分列以外,还可以对一个字段中的某些信息进行提取,并单独形成一列进行分析。下面我们对贷款日期中的月份进行提取,并合并到原数据表中。提取月份所使用的函数为substr。下面的代码中对贷款日期字段的4-6位进行提取,这部分对应着月信息。
#提取贷款日期字段中的月信息(4-6位)
month=substr(loan$issue_d,4,6)
#查看提取的月信息
month
[1] “Jun” “Sep” “Jun” “Apr” “Jun” “Jan” “May” “Dec” “Aug” “Mar” “Dec” “Aug” “Nov” “Jun” “Mar” “Jun” “Apr” “May” “Jul” “Feb” “Jun” “Jun”
[23] “Jun” “Mar” “Mar” “Sep” “Jun” “May” “Jun” “Dec” “Jun” “May” “Jun” “Dec”
将提取出来的月信息与原数据表合并,并查看前5行数据,从下面的结果中可以看出第一列是新增加的月信息。
#将月信息与原贷款表合并并查看前5行
head(cbind(month,loan))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05