数据清洗是整个数据分析过程中一个非常重要的环节。数据清洗的目的有两个,第一是通过清洗让数据可用。第二是让数据变的更适合进行后续的分析工作。本篇文章将介绍几种简单的使用R进行数据清洗的方法。
读取并创建数据表
首先将数据读取到R中,并创建名为loan的数据表。后面我们将对这个数据表进行清洗。
#读取并创建数据表
loan=data.frame(read.csv('loan.csv',header = 1))
使用head函数查看数据表的前5行。
#查看数据表前5行
head(loan)
数据清洗
重复值
使用duplicated函数查看数据表中的用户ID列是否存在重复值,duplicated函数返回该字段每一行的检查结果,重复的标记为TURE,不重复的值标记为FALSE。在下面的结果中可以看到数据表的用户ID列最后四个值为重复值。
#查看特定列是否有重复
duplicated(loan$member_id)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
对于包含重复值的数据表,可以使用unique函数提取数据表中的唯一值,并用唯一值覆盖原有数据,达到去除重复值的目的。下面的代码提取了loan数据表中的唯一值,并重新赋给loan数据表。此时loan数据表中就不包含重复值了。
#删除重复值,返回唯一值列表
loan=unique(loan)
去除完重复值后,再次使用duplicated函数查看,返回的结果中都为FALSE,已经没有重复值了。
#查看重复值
duplicated(loan$member_id)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
查找空值
使用is.na函数查看数据表中的空值,和重复值一样,空值在结果中显示为TURE,非空值显示为FALSE。下面是对loan数据表检查空值的代码和结果。
#查找数据表中的空值
head(is.na(loan),n = 10)
除了对数据表查看空值以外,还可以对表中特定的列检查空值,在is.na函数中输入表和列的名称,就会看到该列中空值的情况,TRUE为空值,FALSE为非空值。
#查看特定列中的空值
is.na(loan$loan_amnt)
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
填充空值
对于数据表中的空值,有两种处理方法,第一种是用0进行填充,第二种是删除包含空值的行。下面是第一种方法,将loan表中的空值填充为0.
#将空值填充为0
loan[is.na(loan)] <- 0
[/code]
第二种方法使用 删除loan表中包含有空值的行。
[code lang="r"]
#删除空值所在行
loan<-na.omit(loan)
[/code]
<h2>
大小写转换</h2>
英文字母的大小写和字符间的空格是影响数据统计的一个常见原因。例如下面我们使用table函数对数据表按贷款状态进行汇总时,相同的贷款状态由于大小写和空格被分割成多种状态。造成统计数据不可用。下面我们对这个字段进行大小写转换和去除空格的清洗。
#按贷款状态进行汇总
table(loan$loan_status)
Fully Paid charged off Charged Off Charged Off Current fully paid fully Paid Fully paid Fully Paid
1 1 8 1 1 2 1 1 15
将英文字母转换为小写的函数是tolower,下面的代码中我们将贷款状态列统一转化为小写字母,然后重复赋给数据表中的贷款状态列。
#将贷款状态转换为小写
loan$loan_status=tolower(loan$loan_status)
转化完成后,再次使用table函数按贷款状态进行汇总,下面下面的结果中可以看到分类从之前的8个减少到了4个,并且的分类都为小写字母。下面我们在继续进行空格清洗。
#按贷款状态进行汇总
table(loan$loan_status)
fully paid charged off charged off current fully paid
1 9 1 1 19
去除两侧空格
去除字符间的空格比大小写转换要复杂一些,首先我们将需要去除空格的列单独拿出来
#提取贷款状态列
loan_status=as.vector(loan$loan_status)
然后使用trim函数去除该列中的空格,trim函数在raster包中,因此需要先安装raster的包。
#安装raster包
install.packages('raster')
安装完成后加载raster包。
#加载raster包
library(raster)
加载完raster包后,使用trim函数去除贷款状态字符中的空格。
#去除贷款状态字段中的空格
loan_s=trim(loan_status)
使用去除完空格的贷款状态覆盖数据表中原有的贷款状态列。
#覆盖原有贷款状态字段
loan$loan_status=loan_s
去除完空格后,再次按贷款状态进行汇总,结果从5个减少为3个,恢复正常。
#按贷款状态进行汇总
table(loan$loan_status)
charged off current fully paid
10 1 20
查看数据类型
使用typeof函数可以查看数据表中字段的数据类型,下面的代码对数据表中的用户收入字段进行数据类型查看,结果为double型。
#查看用户收入字段的数据类型
typeof(loan$annual_inc)
[1] "double"
更改数据类型
使用as.integer函数将用户收入字段的数据类型由double型转化为integer型。
#将用户收入字段更改为integer
loan$annual_inc=as.integer(loan$annual_inc)
转化后再次使用typeof函数查看数据类型,此时已经显示数据类型为integer。
#查看用户收入字段
typeof(loan$annual_inc)
[1] “integer”
数据预处理
数据分列
很多时候我们需要对一列数据进行分裂处理,在excel中直接使用分列功能就可以完成,在R中,使用strsplit函数也可以实现。首先将需要分列的列单独提取出来。这里我们需要对贷款期限进行分裂。
#提取贷款期限字段
term=as.vector(loan$term)
[1] ” 36 months” ” 60 months” ” 36 months” ” 36 months” ” 60 months” ” 36 months” ” 60 months” ” 36 months” ” 60 months” ” 60 months”
[11] ” 60 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months”
[21] ” 60 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 36 months” ” 60 months” ” 36 months” ” 36 months”
[31] ” 36 months” ” 60 months” ” 36 months” ” 36 months”
然后使用strsplit函数对贷款期限进行分列,分列的依据是空格。具体代码和分列的结果如下所示。
#使用空格对字段进行分裂
strsplit(term,' ')
[[1]]
[1] “” “36” “months”
[[2]]
[1] “” “60” “months”
[[3]]
[1] “” “36” “months”
除了分列以外,还可以对一个字段中的某些信息进行提取,并单独形成一列进行分析。下面我们对贷款日期中的月份进行提取,并合并到原数据表中。提取月份所使用的函数为substr。下面的代码中对贷款日期字段的4-6位进行提取,这部分对应着月信息。
#提取贷款日期字段中的月信息(4-6位)
month=substr(loan$issue_d,4,6)
#查看提取的月信息
month
[1] “Jun” “Sep” “Jun” “Apr” “Jun” “Jan” “May” “Dec” “Aug” “Mar” “Dec” “Aug” “Nov” “Jun” “Mar” “Jun” “Apr” “May” “Jul” “Feb” “Jun” “Jun”
[23] “Jun” “Mar” “Mar” “Sep” “Jun” “May” “Jun” “Dec” “Jun” “May” “Jun” “Dec”
将提取出来的月信息与原数据表合并,并查看前5行数据,从下面的结果中可以看出第一列是新增加的月信息。
#将月信息与原贷款表合并并查看前5行
head(cbind(month,loan))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13