SPSS缺失值得分析处理
在资料收集的过程中,由于各种原因可能导致数据收集不全,就会产生缺失值,且这种情况往往无法避免。如果缺失值处理不当,就会导致分析结果精度降低,出现偏倚甚至是错误的理论,因此缺失值的分析显得尤为重要。数据的缺失经常会存在着一定的规律,为了认识和研究缺失数据,按照数据缺失形式,我们常将其分为单元缺失与项目缺失两种。
(1)单元缺失:只针对需调查的个案进行调查而没有得到个案信息。如对整个班级进行调查,发放60分调查表,部分调查对象未交回调查表导致的资料缺失。这种缺失在数据分析阶段常常无能为力。
(2)项目缺失:指在调查内容中某些变量的观测结果有缺失。如对整个班级进行调查后,收回的调查表中,部分女生因为“保密”而未填写体重一项,造成资料缺失。
无论缺失数据的形式是单元缺失还是项目缺失,从缺失机制与方式上又可将其分为完全随机缺失、随机缺失与非随机缺失。
(1)完全随机缺失(Missing Completely at Random,MCAR)指已评价的结果或即将要进行的评价结果中,研究对象的缺失率是独立的。即缺失现象完全随机发生,与自身或其他变量取值无关。如调查进行中,因被调查对象接到电话,或紧急事件马上离开,调查无完成导致缺失。
(2)随机缺失(Missing at Random,MAR)指缺失数据的发生与数据库中其他无缺失变量的取值有关。某一观察值缺失的概率仅依赖已有的观察结果。比如,研究某新药对高血压患者的疗效,但一些血压过高的患者,根据纳入标准予以排除。MAR是最常见的缺失机制。
(3)非随机缺失(MIssing Not at Random,MNAR)指数据的缺失不仅与其他变量的取值有关,缺失率与缺失数据有关,也和自身有关。这种缺失大都不是偶然因素所造成的,常常是不可忽略的,比如在调查收入时,收入高的人出于各种原因不愿意提供家庭年收入值。对于MNAR此种缺失机制,目前尚无特别有效的方法能进行处理。
识别缺失数据的产生机制是极其重要的,首先这涉及到代表性问题,从统计上说,非随机缺失的数据会产生偏估计,因此不能很好地代表总体。其次,它决定数据插补方法的选择。随机缺失数据处理相对比较简单,但非随机缺失数据处理比较困难,原因在于偏差的程度难以把握。
面对不同的数据缺失情况,那我们该如何处理呢?大致上我们把处理方法归为以下几类。
1、删除缺失值
最常见、最简单的处理缺失数据的方法,使用这种方法时,如果任何个案在某一变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例较小 的话,这一方法十分有效。然而,这种方法却有很大的局限性,它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。
2、缺失值代替
即“转换”选项卡中“替换缺失值”菜单过程。此过程将所有的记录看成一个序列,然后采用某种指标对缺失值进行填充,它实际上专门用于解决时间序列模型中的缺失值问题。虽然其中的一些填充方法也可以用于普通数据,但相比之下,如果在序列数据中使用该过程可能得不偿失,应当谨慎使用。常用的填充方式由算术均数、缺失值邻近点的算术均数、中位数以及线性插入等。
3、缺失值分析
此过程是SPSS专门针对缺失值分析而提供的模块,他提供了对缺失值问题全面而强大的分析能力,主要功能有以下3种:
(1)缺失值的描述和快速诊断:用灵活的诊断报告来评估缺失值问题的严重性,用户可以观察到它们在哪些变量中出现,比例为多少,是否与其他变量取值有关,从而得知这些缺失值出现是否会影响分析结论。
(2)得到更精确的统计量:提供了多种方法用于估计含缺失值数据的均值、相关矩阵或协方差矩阵,通过这些方法计算出的统计量将更加可靠。
(3)用估计值替换缺失值:使用EM或回归法,用户可以从未缺失数据的分布情况中推算出缺失数据的估计值,从而能有效地使用所有数据进行分析,来提高统计结果的可信度。
在前述的3种缺失机制中,非随机缺失很难得到有效的统计学处理,SPSS的缺失值分析模块主要是对MCAR和MAR的情形进行分析,尤其是后者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25