京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:非线性回归;科学种田!肥料应该用多少合适
非线性回归
非线性关系可以分为本质是线性关系的非线性关系和完全非线性关系,有点拗口。在曲线回归总已经介绍,可以通过变量装换,转化为线性关系,并进行线性回归分析的就是本质是线性关系的非线性关系。如果无法通过变量装换,转化为线性关系,无法进行线性回归分析的叫完全非线性关系。今天我们介绍的非线性关系就是完全非线性关系的回归分析。
非线性回归的优势
曲线估计只能用于一个自变量和因变量相关关系的模型的分析,而非线性回归分析可以用来探讨因变量和一组自变量之间的非线性相关模型。非线性回归可以估计因变量和自变量之间任意关系的模型,可以根据自身需要随意设定估计方程的具体形式。因此,非线性回归在实际应用中价值更大,应用范围更广。
非线性回归模型
范例分析
某省农科院新培育了一种高产量农作物,并在海南的试验田中进行实验种植,现有试验田施肥量及其对应的农作物产量数据,根据该数据文件推定施肥量与产量之间的关系。
分析步骤
1、做散点图,观察施肥量与农作物产量的关系;选择菜单【图形】-【旧对话框】-【散点/点状】,将施肥量选为自变量,产量选为因变量。
2、 估计初始值;根据上图,施肥量和产量之间似乎存在线性关系。但是根据实际经验可知,这种推断不正确。因为作物产量不可能随着施肥量的增加而一直增加下去,当产量达到一定水平时,施肥量的增加不会带来产量的进一步提高,二者的关系可以用渐进回归模型:
要确定回归方程,首要估算出参数b1、b2、b3的初始值。由散点图看出,产量最大值接近13,不妨设b1=13;x=0时,y=6,故b2=6-13=-7;b3为散点图中两个分隔较宽的点之间的连线的斜率的倒数,在此取b3=-1.5。
3、参数设置;选择【分析】-【回归】-【非线性】菜单,打开非线性回归对话框。按照下图输入数据。
4、损失函数设置;单击“损失”,设置损失函数。所谓损失函数是指一个包括当前工作文件中的变量以及所设定的参数并通过计算法使之最小化的函数。系统默认状态下,非线性回归过程根据算法将残差平方和最小化为损失函数。如果选择“用户定义的损失函数”,可以再“用户定义的损失函数”列表框中键入或者粘贴一个表达式。字符串常数必须包含在引号或撇号中,数字常数必须按以美式格式键入,并用句点作为小数分隔符。本案例选择系统默认设置。单击“继续”。
5、 参数约束设置;单击“约束,定义参数约束。“约束”是在对解的迭代搜索过程中对参数所允许值的限制。该对话框有两个设置选项:“未约束”和“定义参数约束”。
6、 保存设置;单击“保存”,该对话框提供4种用于保存的数据类型,允许作为新变量的观测值保存于当前文件中。
7、算法选项设置;单击“选项”,该对话框用于设置参数估计的算法和算法的迭代次数、迭代步长和收敛条件等。
结果解释
1、 如上图所示,该案例经过多大20步的迭代估计之后,找到模型的最优解,即 b1、b2、b3的参数估计值13.348、-10.783和-0.418,此外还得到了三个参数值的标准误差和95%置信区间,以及三个参数估计值的相关系数,可以看出各个参数值之间的相关性很高,尤其是b1和b3的相关系数达到0.968,属非常显著的相关关系。
2、 根据上表回归模型的方差分析结果,表中回归行的平方和代表该回归模型所能解释的模型的方差变化,而残差行的平方和代表该非线性回归模型所不能解释的方差变化。二者的和即为未修正的总计,它是总的残差平方和,而R2=1-(残差平方和)/(已更正的平方和)=0.907,说明该模型能解释因变量90.7%的变异量,即该非线性模型的拟合优度很高。根据以上分析可以确定,该分析所获得的回归模型显著。
根据线性回归模型:
可得回归方程:
从散点图可以知道,目前采集到的数据还不足够,因为图中没有出现明显的平缓趋势。为了找到最合适的施肥量,可以通过得到的回归方程,做出自变量(施肥量)范围更广的曲线,找出曲线的平缓位置,这个位置对应的横轴值就是合理的施肥量。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24