京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS中介效应分析
社会心理学研究中经常遇到分析待研究的自变量与因变量之外的第三者变量在其中所扮演的角色和意义。如果第三者变量是协变量,我们可以通过协变量的方差分析或回归分析加以控制;如果第三者经过排查不是协变量,可能是因果之间的间接变量和(或)调节变量,对这类的问题的研究,中介效应与调节效应分析时可行的解决之道。
一、中介效应的概述
中介效应是指变量间的影响关系(X-Y)不是直接的因果链关系,而是通过一个或一个以上的变量(M)的间接影响产生的,因此我们称M为中介变量,而X通过M对Y产生的间接影响称为中介效应。中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应不等于简介效应,此时间接效应可能是部分中介效应和所有中介效应的总和。在社会心理学研究当中,变量间的关系很少是直接的,更常见的是间接关系。
自变量X对因变量Y的影响,如果X变量通过影响M变量来影响Y变量,则M为中介变量。通常将变量经过中心化转化后,得方程1:Y=cX+e1;方程2:M=aX+e2;方程3:Y=c’X+b M +e3。其中,c是X对Y的总效应,ab是经过中介变量M的中介效应,c'是直接效应。当只有一个中介变量时,效应之间有c=c'+ab,中介效应的大小用c-c'=ab来衡量。
二、中介效应检验过程
中介效应是简介效应,无论变量是否涉及潜变量,都可以用结构方程模型分析中介效应。步骤为:第一步检验c,如果c不显著,Y与X相关不显著,停止中介效应分析,如果显著进行第二步;第二步依次检验a、b,如果都显著,那么检验c',c'显著,为部分中介效应模型,c'不显著,则为完全中介效应模型;如果a、b至少有一个不显著,则做sobel检验,检验的统计量是Z=^a^b/Sab,显著则中介效应显著,不显著则中介效应不显著。Sobel检验免费的在线计算器网址为http://www.danielsoper.com/statcalc/calc31.aspx,只要把这a、b、SEa、SEb四个数输入,就可以直接得到Z值及其单侧与双侧概率。
三、实例详解
研究工作认同感与工作绩效之间心理因素(焦虑)的意义。原始数据包括:领导不认同、同事不认同、客户不认同、心跳、紧张、坐立不安、效率低和效率下降8个变量,如图3-1所示。
图30-1 中间效应分析例题数据库
操作步骤:
(1)根据分析目的,合并原始变量产生3个新变量“工作不被认同”、“焦虑”和“工作绩效”,如图30-2所示,各个新变量值等于原始变量的均值。
图3-2 产生3个新变量
自变量(X)为“工作不被认同”包含3个观测指标:领导不认同、同事不认可、客户不认可;中介变量(M)“焦虑”包含3个指标:心跳、紧张、坐立不安;因变量(Y)“工作绩效”包含两个观测指标:效率低和效率下降。
新变量的均值如图3-3所示。
描述统计量
图30-3 新变量的均值
(2)将新变量X、M、Y中心化,即个体值与其均数之差处理,得到中心化后的新变量:X“不被认同(中心化)”、M“焦虑(中心化)”、Y“工作绩效(中心化)”,如图3-4所示。

图3-4 中心化后的新变量
(3)中介效应分析第一步检验,即检验方程Y=cX+e1中的c是否显著。
SPSS实现过程如下:
1)单击“分析”|“回归”|“线性”命令,弹出图3-5所示的“线性回归”对话框。
2)将变量“工作绩效(中性化)”放入“因变量”框,将变量“不被认同(中性化)”放入“自变量”框。方法选择“进入”。
图3-5 “线性回归”对话框
3)单击“统计量”按钮,弹出3-6所示的“线性回归:统计量”对话框,选择左侧的“估计(E)”复选框,选择右侧“模型拟合度(M)”和“R方变化(S)”复选框。其他采用系统默认,单击“继续”按钮返回主对话框。
图3-6 “线性回归:统计量”分析对话框
4)单击“确定”按钮,输出结果。

图3-7 回归分析检验方差中c的显著性结果1
检验结果如图3-7和图3-8所示。可知,方程Y=cX+e1的回归效应显著,c值等于0.678,P=0.000,可以进行方程M=aX+e2和Y=c'X+bM+e3的显著性检验。
图3-8 回归分析检验方差中c的显著性结果2
(4)中介效应分析第二步检验,即检验方程M=aX+e2中的a是否显著。
SPSS实现过程如下:
1)单击“分析”|“回归”|“线性”命令,弹出图3-5所示的“线性回归”对话框。
2)将变量“焦虑(中性化)”放入“因变量”框,将变量“不被认同'(中性化)”放入“自变量”框。方法选择“进入”。
图3-9 回归分析检验方差中a的显著性结果1
3)其他选择不变,单击“确定”按钮,输出结果,如图3-9、3-10所示。
图3-10 回归分析检验方差中a的显著性结果2
由图3-9、图3-10所示结果分析可知,方程M=aX+e2中,a值等于0.533,显著性P=0.000,继续进行方程Y=c'X+bM+e3的显著性检验。
(5)中介效应分析第三步检验,即检验方程Y=c'X+bM+e3中的b是否显著。
SPSS实现过程如下:
1)单击“分析”|“回归”|“线性”命令,弹出3-5所示的“线性回归”对话框。
2)将变量“工作绩效(中性化)”放入“因变量”框,将变量“不被认同(中性化)”和“焦虑(中性化)”同时放入“自变量”框。方法选择“进入”。
3)其他选项不变,单击“确定”按钮,输出结果,如图3-11、3-12所示。
图3-12 回归分析检测方差中b的显著性结果2
如图3-11、图3-12所示的结果分析可知,方程Y=c'X+bM+e3中,b值为0.213.显著性为p=0.000,因此a和b都是有显著性的,接下来检验中介效应到底是部分中介效应还是完全中介效应。
(6)判断完全中介效应还是部分中介效应,即c'的显著性。
由图30-7所示的结果可知c'等于0.574,显著性为P=0.000,因此是部分中介效应。自变量“工作不被认同”对因变量“工作绩效”的中介效应不完全通过中介变量“焦虑”的中介来达到其影响,“工作不被认同”对“工作绩效”有部分直接效应,中介效应对总效应的频率为:Effect M=ab/c=0.533x0.213/0.678(16.7%),中介效应解释了因变量的方差变异为sqrt(0.490-0.459)=0.176(17.6%)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24