大数据时代几个关键问题剖析
大数据时代来临,每个公司都应该重视起数据部门。以前搜集数据没有足够的时间、能力、资源,因而无法获得更多的支撑。因为数据量不够。当我们有了更多的数据,我们看到的东西发生实质的变化,我们以前从来没有看到过这种情形。足够的数据,让我们更好的理解彼此,达到历史绝无仅有的水平。
大数据的核心在于共享
大数据之父舍恩伯格说“大数据的核心要义在于共享。”
我们的各级政府、公共机构汇集了存量大、质量好、增长速度快、与社会公众关系密切的海量数据资源。除了部分分享自用和信息公开外,大部分没有充分发挥数据源作为“生产要素、无形资产和社会财富”应有的作用。究其原因,主要表现在三个方面:
第一,不愿共享开放。这是一个认识问题,政府部门和公共机构未意识到共享开放价值。另一方面利益分配的问题,有的政府部门和公共机构把自己掌握和获取的数据当做权力和利益,更甚的作为私有财产不愿共享。这造成不同机构之间甚至部门之间都难以实现数据共享。另外,相关法律法规、制度标准相对落后,没有形成管理体系。
第二,不敢共享开放。由于缺乏严格规范的数据相关法规,从事此项工作人员担心政务数据共享会引起信息安全问题,担心数据泄密失控,对开放有恐惧。
第三,不会共享开放。这是一个专业化工作。数据封闭、信息孤岛等系列问题均是共享开放不当引起。相反,不该共享开放却为之会带来更大的损失,甚至威胁到国家安全。
目前,持观望态度为主流。大数据的发展如何真正步入实践,落地操作成为一大问题。
数据专家对大数据时代解析
专家解析:大数据时代的到来,对应“dirve data”类的数据技术和应用,无意是注入了血液和激素,如推荐系统、人工智能、机器学习等,简单来说大数据是一个把钥匙,开启的更多基于大数据为基础,通过机器学习、大规模分布式计算等手段,构建的数据挖掘和人工智能类的应用组成的“智能”时代的到来。
大数据时代的到来首先我们要构建好的大数据存储,简单来说就是分布式数据仓库的基础架构的搭建和数据存储建模,
满足大数据时代带来的“智能”时代需求的数据仓库日显重要,如何建立好的数据部门,其实是每个公司都应该重视的问题。聊到数据仓库,简单说传统数据仓库到互联网中基于日志的大数据处理仓库的转变。数据仓库发展两个重要的人物Bill Inmon提出集中式架构和Ralph Kimball提出的总线架构,到目前大数据数据仓库的发展和经验总结,提出的的五层模型(ODS、DWD、DWB/DWS、DM、ST),其中也是源于数据仓库的需求从支持战略决策到需要支持战术决策的转变,支持更多的“智能”应用。
在很多公司在有大数据“钥匙”之后 ,都会不断投入围绕大数据的大规模分布式机器学习构建的“智能”化应用开发中,不断去尝试开启的未来更加广阔的天地,这样也带来了关于计算和机器学习等方面的技术的进步,如分布式计算、实时流式计算、深度学习等计算,同样也促使这技术人员的技能转变和市场上人才和需求的供需不平衡。
迫在眉睫:如今的大数据需要哪种人才?
(1)大数据系统研发工程师
这一专业人才负责大数据系统研发,包括大规模非结构化数据业务模型构建、大数据存储、数据库构设、优化数据库构架、解决数据库中心设计等,同时,还要负责数据集群的日常运作和系统的监测等,这一类人才是任何构设大数据系统的机构都必须的。
(2)大数据应用开发工程师
此类人才负责搭建大数据应用平台以及开发分析应用程序,他们必须熟悉工具或算法、编程、优化以及部署不同的MapReduce,他们研发各种基于大数据技术的应用程序及行业解决方案。其中,ETL开发者是很抢手的人才,他们所做的是从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要,将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库,成为联机分析处理、数据挖掘的基础,为提取各类型的需要数据创造条件。
(3)大数据分析师
此类人才主要从事数据挖掘工作,运用算法来解决和分析问题,让数据显露出真相,同时,他们还推动数据解决方案的不断更新。随着数据集规模不断增大,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce、Pig等的需求将持续增长,具备Hadoop框架经验的技术人员是最抢手的大数据人才,他们所从事的是热门的分析师工作。
(4)数据可视化工程师
此类人才负责在收集到的高质量数据中,利用图形化的工具及手段的应用,清楚地揭示数据中的复杂信息,帮助用户更好地进行大数据应用开发,如果能使用新型数据可视化工具如Spotifre,Qlikview和Tableau,那么,就成为很受欢迎的人才。
(5)数据安全研发人才
此类人才主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施,而对于数据安全方面的具体技术的人才就更需要了,如果数据安全技术,同时又具有较强的管理经验,能有效地保证大数据构设和应用单位的数据安全,那就是抢手的人才
(6)数据科学研究人才
数据科学研究是一个全新的工作,够将单位、企业的数据和技术转化为有用的商业价值,随着大数据时代的到来,越来越多的工作、事务直接涉及或针对数据,这就需要有数据科学方面的研究专家来进行研究,通过研究,他们能将数据分析结果解释给IT部门和业务部门管理者听,数据科学专家是联通海量数据和管理者之间的桥梁,需要有数据专业、分析师能力和管理者的知识,这也是抢手的人才。
总结:
凡事有利弊。打开窗,收获的不只新鲜空气,还有苍蝇和蚊虫。大数据开启了一个大规模生产、分享和应用数据的时代,它给技术和商业带来了巨大的变化。在大数据时代背景下,如何从大数据中采集出有用的信息已经是大数据发展的关键因素之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10