用R语言求概率分布_r语言 概率分布图
R语言一个很方便的用处是提供了一套完整的统计表集合。函数可以对累积分布函数P(X≤x),概率密度函数,分位函数(对给定的q,求满足P(X≤x) > q的最小x)求值,并根据分布进行模拟。
在R中,根据某种分布生成随机序列的函数如下:
在统计学中,产生随机数据是很有用的,R可以产生多种不同分布下的随机数序列。这些分布函数的形式为rfunc(n,p1,p2,…),其中func指概率分布函数,n为生成数据的个数,p1, p2, . . .是分布的参数数值。上面的表给出了每个分布的详情和可能的缺省值(如果没有给出缺省值,则意味着用户必须指定参数)。数据分析培训
例:用0~1之间的均匀分布产生10个随机点
> runif(10)
[1] 0.961465376 0.007521925 0.193619234 0.137027246 0.739370654 0.072907082
[7] 0.674551635 0.650777811 0.984664183 0.796723066
大多数这种统计函数都有相似的形式,只需用d、p或者q去替代r,比如密度函数(dfunc(x, …)),累计概率密度函数(也即分布函数)(pfunc(x,…))和分位数函数(qfunc(p, …),0<p<1)。最后两个函数序列可以用来求统计假设检验中P值或临界值。例如,显著性水平为5%的正态分布的双侧临界值是:
> qnorm(0.025)
[1] -1.959964
> qnorm(0.975)
[1] 1.959964
对于同一个检验的单侧临界值,根据备择假设的形式使用qnorm(0.05)或1 – qnorm(0.95)。
下面是一些用R语言求解概率问题的例子:
1. 某人进行射击,每次击中目标的命中率为0.02,独立射击400次,求至少击中两次的概率。
解:400重伯努利试验,用二项分布求解。
P{X = k} = C400k * (0.02)^k * (0.0=98)^(400-k)
P{X≥2} = 1 – P{X = 0} – P{X = 1}
> 1 – sum(pbinom(0:1, 400, 0.02))
[1] 0.9968561
结论:决不能轻视小概率事情,在多次重复试验的情况下,这一事件的发生几乎是肯定的。
2. 设X服从平均值为1,标准差为2的正态分布(高斯分布),即X ~ N(1, 4),求P{0<X≤1.6}
解:这里X是一个连续型随机变量。求X在某段区间上的概率,用X的分布函数在区间两端的值的差。
方法一:P{0<X≤1.6} = P{X≤1.6} – P{X≤0} = F(1.6) – F(0)
> pnorm(1.6, 1, 2) – pnorm(0, 1, 2)
[1] 0.3093739
方法二:转化为标准正态分布。P{x1 < X ≤x2}=P{(x1-μ)/σ < (X-μ)/σ≤(x1-μ)/σ}=φ((x2-μ)/σ) –φ((x1-μ)/σ)
即P{0<X≤1.6}=φ((1.6-1)/2) –φ((0-1)/2)
> pnorm((1.6-1)/2) – pnorm((0-1)/2) #pnorm函数的缺省参数mean=0,sd=1,即默认标准正态分布
[1] 0.3093739
知识点:设X是一个随机变量,x是任意实数,函数F(x)=P{X≤x}称为X的分布函数。
对于任意实数x1,x2(x1<x2),有P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1),
因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。
分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量。
如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率。
3. 求标准正态分布的上α分位点。
知识点:设X~N(0,1),若Zα满足条件 P(X>Zα)=α,0<α<1,则称Zα为标准正态分布的上α分位点.
注意上α分位点和R语言中分位函数(对给定的q,求满足P(X≤x) > q的最小x)之间的关系。
解:下面给出α=0.001、α=0.005、α=0.01、α=0.025时的上α分位点Zα的值。
> exp <- expression_r(qnorm(1 – alpha))
> alpha = 0.001
> eval_r(exp)
[1] 3.090232
> alpha = 0.005
> eval_r(exp)
[1] 2.575829
> alpha = 0.01
> eval_r(exp)
[1] 2.326348
> alpha = 0.025
> eval_r(exp)
[1] 1.959964
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31