用R语言求概率分布_r语言 概率分布图
R语言一个很方便的用处是提供了一套完整的统计表集合。函数可以对累积分布函数P(X≤x),概率密度函数,分位函数(对给定的q,求满足P(X≤x) > q的最小x)求值,并根据分布进行模拟。
在R中,根据某种分布生成随机序列的函数如下:
在统计学中,产生随机数据是很有用的,R可以产生多种不同分布下的随机数序列。这些分布函数的形式为rfunc(n,p1,p2,…),其中func指概率分布函数,n为生成数据的个数,p1, p2, . . .是分布的参数数值。上面的表给出了每个分布的详情和可能的缺省值(如果没有给出缺省值,则意味着用户必须指定参数)。数据分析培训
例:用0~1之间的均匀分布产生10个随机点
> runif(10)
[1] 0.961465376 0.007521925 0.193619234 0.137027246 0.739370654 0.072907082
[7] 0.674551635 0.650777811 0.984664183 0.796723066
大多数这种统计函数都有相似的形式,只需用d、p或者q去替代r,比如密度函数(dfunc(x, …)),累计概率密度函数(也即分布函数)(pfunc(x,…))和分位数函数(qfunc(p, …),0<p<1)。最后两个函数序列可以用来求统计假设检验中P值或临界值。例如,显著性水平为5%的正态分布的双侧临界值是:
> qnorm(0.025)
[1] -1.959964
> qnorm(0.975)
[1] 1.959964
对于同一个检验的单侧临界值,根据备择假设的形式使用qnorm(0.05)或1 – qnorm(0.95)。
下面是一些用R语言求解概率问题的例子:
1. 某人进行射击,每次击中目标的命中率为0.02,独立射击400次,求至少击中两次的概率。
解:400重伯努利试验,用二项分布求解。
P{X = k} = C400k * (0.02)^k * (0.0=98)^(400-k)
P{X≥2} = 1 – P{X = 0} – P{X = 1}
> 1 – sum(pbinom(0:1, 400, 0.02))
[1] 0.9968561
结论:决不能轻视小概率事情,在多次重复试验的情况下,这一事件的发生几乎是肯定的。
2. 设X服从平均值为1,标准差为2的正态分布(高斯分布),即X ~ N(1, 4),求P{0<X≤1.6}
解:这里X是一个连续型随机变量。求X在某段区间上的概率,用X的分布函数在区间两端的值的差。
方法一:P{0<X≤1.6} = P{X≤1.6} – P{X≤0} = F(1.6) – F(0)
> pnorm(1.6, 1, 2) – pnorm(0, 1, 2)
[1] 0.3093739
方法二:转化为标准正态分布。P{x1 < X ≤x2}=P{(x1-μ)/σ < (X-μ)/σ≤(x1-μ)/σ}=φ((x2-μ)/σ) –φ((x1-μ)/σ)
即P{0<X≤1.6}=φ((1.6-1)/2) –φ((0-1)/2)
> pnorm((1.6-1)/2) – pnorm((0-1)/2) #pnorm函数的缺省参数mean=0,sd=1,即默认标准正态分布
[1] 0.3093739
知识点:设X是一个随机变量,x是任意实数,函数F(x)=P{X≤x}称为X的分布函数。
对于任意实数x1,x2(x1<x2),有P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1),
因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。
分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量。
如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率。
3. 求标准正态分布的上α分位点。
知识点:设X~N(0,1),若Zα满足条件 P(X>Zα)=α,0<α<1,则称Zα为标准正态分布的上α分位点.
注意上α分位点和R语言中分位函数(对给定的q,求满足P(X≤x) > q的最小x)之间的关系。
解:下面给出α=0.001、α=0.005、α=0.01、α=0.025时的上α分位点Zα的值。
> exp <- expression_r(qnorm(1 – alpha))
> alpha = 0.001
> eval_r(exp)
[1] 3.090232
> alpha = 0.005
> eval_r(exp)
[1] 2.575829
> alpha = 0.01
> eval_r(exp)
[1] 2.326348
> alpha = 0.025
> eval_r(exp)
[1] 1.959964
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13