
用R语言求概率分布_r语言 概率分布图
R语言一个很方便的用处是提供了一套完整的统计表集合。函数可以对累积分布函数P(X≤x),概率密度函数,分位函数(对给定的q,求满足P(X≤x) > q的最小x)求值,并根据分布进行模拟。
在R中,根据某种分布生成随机序列的函数如下:
在统计学中,产生随机数据是很有用的,R可以产生多种不同分布下的随机数序列。这些分布函数的形式为rfunc(n,p1,p2,…),其中func指概率分布函数,n为生成数据的个数,p1, p2, . . .是分布的参数数值。上面的表给出了每个分布的详情和可能的缺省值(如果没有给出缺省值,则意味着用户必须指定参数)。数据分析培训
例:用0~1之间的均匀分布产生10个随机点
> runif(10)
[1] 0.961465376 0.007521925 0.193619234 0.137027246 0.739370654 0.072907082
[7] 0.674551635 0.650777811 0.984664183 0.796723066
大多数这种统计函数都有相似的形式,只需用d、p或者q去替代r,比如密度函数(dfunc(x, …)),累计概率密度函数(也即分布函数)(pfunc(x,…))和分位数函数(qfunc(p, …),0<p<1)。最后两个函数序列可以用来求统计假设检验中P值或临界值。例如,显著性水平为5%的正态分布的双侧临界值是:
> qnorm(0.025)
[1] -1.959964
> qnorm(0.975)
[1] 1.959964
对于同一个检验的单侧临界值,根据备择假设的形式使用qnorm(0.05)或1 – qnorm(0.95)。
下面是一些用R语言求解概率问题的例子:
1. 某人进行射击,每次击中目标的命中率为0.02,独立射击400次,求至少击中两次的概率。
解:400重伯努利试验,用二项分布求解。
P{X = k} = C400k * (0.02)^k * (0.0=98)^(400-k)
P{X≥2} = 1 – P{X = 0} – P{X = 1}
> 1 – sum(pbinom(0:1, 400, 0.02))
[1] 0.9968561
结论:决不能轻视小概率事情,在多次重复试验的情况下,这一事件的发生几乎是肯定的。
2. 设X服从平均值为1,标准差为2的正态分布(高斯分布),即X ~ N(1, 4),求P{0<X≤1.6}
解:这里X是一个连续型随机变量。求X在某段区间上的概率,用X的分布函数在区间两端的值的差。
方法一:P{0<X≤1.6} = P{X≤1.6} – P{X≤0} = F(1.6) – F(0)
> pnorm(1.6, 1, 2) – pnorm(0, 1, 2)
[1] 0.3093739
方法二:转化为标准正态分布。P{x1 < X ≤x2}=P{(x1-μ)/σ < (X-μ)/σ≤(x1-μ)/σ}=φ((x2-μ)/σ) –φ((x1-μ)/σ)
即P{0<X≤1.6}=φ((1.6-1)/2) –φ((0-1)/2)
> pnorm((1.6-1)/2) – pnorm((0-1)/2) #pnorm函数的缺省参数mean=0,sd=1,即默认标准正态分布
[1] 0.3093739
知识点:设X是一个随机变量,x是任意实数,函数F(x)=P{X≤x}称为X的分布函数。
对于任意实数x1,x2(x1<x2),有P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1),
因此,若已知X的分布函数,就可以知道X落在任一区间(x1,x2]上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。
分布函数是一个普遍的函数,正是通过它,我们将能用数学分析的方法来研究随机变量。
如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间(-∞,x]上的概率。
3. 求标准正态分布的上α分位点。
知识点:设X~N(0,1),若Zα满足条件 P(X>Zα)=α,0<α<1,则称Zα为标准正态分布的上α分位点.
注意上α分位点和R语言中分位函数(对给定的q,求满足P(X≤x) > q的最小x)之间的关系。
解:下面给出α=0.001、α=0.005、α=0.01、α=0.025时的上α分位点Zα的值。
> exp <- expression_r(qnorm(1 – alpha))
> alpha = 0.001
> eval_r(exp)
[1] 3.090232
> alpha = 0.005
> eval_r(exp)
[1] 2.575829
> alpha = 0.01
> eval_r(exp)
[1] 2.326348
> alpha = 0.025
> eval_r(exp)
[1] 1.959964
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14