
在很多的资料中都描述说SQLSERVER的存储过程较普通的SQL语句有以下优点:
存储过程只在创造时进行编译即可,以后每次执行存储过程都不需再重新编译,而我们通常使用的SQL语句每执行一次就编译一次,所以使用存储过程可提高数据库执行速度。
经常会遇到复杂的业务逻辑和对数据库的操作,这个时候就会用SP来封装数据库操作。当对数据库进行复杂操作时(如对多个表进行 Update,Insert,Query,Delete时),可将此复杂操作用存储过程封装起来与数据库提供的事务处理结合一起使用。可以极大的提高数据 库的使用效率,减少程序的执行时间,这一点在较大数据量的数据库的操作中是非常重要的。在代码上看,SQL语句和程序代码语句的分离,可以提高程序代码的 可读性。
存储过程可以设置参数,可以根据传入参数的不同重复使用同一个存储过程,从而高效的提高代码的优化率和可读性。
安全性高,可设定只有某此用户才具有对指定存储过程的使用权存储过程的种类:
系统存储过程:以sp_开头,用来进行系统的各项设定.取得信息.相关管理工作,如 sp_help就是取得指定对象的相关信息。
扩展存储过程 以XP_开头,用来调用操作系统提供的功能
exec master..xp_cmdshell ‘ping 10.8.16.1’
用户自定义的存储过程,这是我们所指的存储过程常用格式
模版:Create procedure procedue_name [@parameter data_type][output]
[with]{recompile|encryption} as sql_statement
解释:output:表示此参数是可传回的
with {recompile|encryption} recompile:表示每次执行此存储过程时都重新编译一次;encryption:所创建的存储过程的内容会被加密。
但是最近我们项目组中有人写了一个存储过程,其计算时间为1个小时47分钟,而有的时候运行时间都超过了两个小时,同事描述说如果将存储过程中的语句拿出来直接运行也就10分钟左右就运行完毕,我没当回事,但是今天我自己写的存储过程也遇到了这个问题,在查找资料后原因终于找到了原因,原来是Parameter sniffing问题。
下面看我是如何将运行一个小时以上的存储过程优化成在一分钟之内完成的:
原存储过程
CREATE PROCEDURE [dbo].[pro_ImAnalysis_daily]
@THEDATE VARCHAR(30)
AS
BEGIN
IF @THEDATE IS NULL
BEGIN
SET @THEDATE=CONVERT(VARCHAR(30),GETDATE()-1,112);
END
DELETE FROM RPT_IM_USERINFO_DAILY WHERE THEDATE=@THEDATE;
INSERT RPT_IM_USERINFO_DAILY (THEDATE,ALLUSER,NEWUSER)
SELECT AA.THEDATE,ALLUSER,NEWUSER
FROM
( ( SELECT THEDATE,COUNT(DISTINCT USERID) ALLUSER
FROM FACT
WHERE THEDATE=@THEDATE
GROUP BY THEDATE
) AA
LEFT JOIN
(SELECT THEDATE,COUNT(DISTINCT USERID) NEWUSER
FROM FACT T1
WHERE NOT EXISTS(
SELECT 1
FROM FACT T2
WHERE T2.THEDATE<@THEDATE
AND T1.USERID=T2.USERID)
AND T1.THEDATE=@THEDATE
GROUP BY THEDATE
) BB
ON AA.THEDATE=BB.THEDATE);
GO
每日执行:exec pro_ImAnalysis_daily @thedate=null
耗时:1小时47分~2小时13分
经过查找资料,原因如下(由于源文是一篇英文,有些地方写的我不是特别清楚,原文见http://groups.google.com/group/microsoft.public.sqlserver.server/msg/ad37d8aec76e2b8f?hl=en&lr=&ie=UTF-8&oe=UTF-8):
在SQL Server中有一个叫做 “Parameter sniffing”的特性。SQL Server在存储过程执行之前都会制定一个执行计划。在上面的例子中,SQL在编译的时候并不知道@thedate的值是多少,所以它在执行执行计划的时候就要进行大量的猜测。假设传递给@thedate的参数大部分都是非空字符串,而FACT表中有40%的thedate字段都是null,那么SQL Server就会选择全表扫描而不是索引扫描来对参数@thedate制定执行计划。全表扫描是在参数为空或为0的时候最好的执行计划。但是全表扫描严重影响了性能。
假设你第一次使用了Exec pro_ImAnalysis_daily @thedate=’20080312’那么SQL Server就会使用20080312这个值作为下次参数@thedate的执行计划的参考值,而不会进行全表扫描了,但是如果使用@thedate=null,则下次执行计划就要根据全表扫描进行了。
有两种方式能够避免出现“Parameter sniffing”问题:
(1)通过使用declare声明的变量来代替参数:使用set @variable=@thedate的方式,将出现@thedate的sql语句全部用@variable来代替。
(2) 将受影响的sql语句隐藏起来,比如:
a) 将受影响的sql语句放到某个子存储过程中,比如我们在@thedate设置成为今天后再调用一个字存储过程将@thedate作为参数传入就可以了。数据分析培训
b) 使用sp_executesql来执行受影响的sql。执行计划不会被执行,除非sp_executesql语句执行完。
c) 使用动态sql(”EXEC(@sql)”来执行受影响的sql。
采用(1)的方法改造例子中的存储过程,如下:
ALTER PROCEDURE [dbo].[pro_ImAnalysis_daily]
@var_thedate VARCHAR(30)
AS
BEGIN
declare @THEDATE VARCHAR(30)
IF @var_thedate IS NULL
BEGIN
SET @var_thedate=CONVERT(VARCHAR(30),GETDATE()-1,112);
END
SET @THEDATE=@var_thedate;
DELETE FROM RPT_IM_USERINFO_DAILY WHERE THEDATE=@THEDATE;
INSERT RPT_IM_USERINFO_DAILY (THEDATE,ALLUSER,NEWUSER)
SELECT AA.THEDATE,ALLUSER,NEWUSER
FROM
( ( SELECT THEDATE,COUNT(DISTINCT USERID) ALLUSER
FROM FACT
WHERE THEDATE=@THEDATE
GROUP BY THEDATE
) AA
LEFT JOIN
(SELECT THEDATE,COUNT(DISTINCT USERID) NEWUSER
FROM FACT T1
WHERE NOT EXISTS(
SELECT 1
FROM FACT T2
WHERE T2.THEDATE<@THEDATE
AND T1.USERID=T2.USERID)
AND T1.THEDATE=@THEDATE
GROUP BY THEDATE
) BB
ON AA.THEDATE=BB.THEDATE);
GO
测试执行速度为10分钟,我又检查了一下这个SQL,发现这个SQL有问题,这个SQL使用了not exists,在一个大表里面使用not exists是不太明智的,所以,我又对这个sql进行了改进,改成如下:
ALTER PROCEDURE [dbo].[pro_ImAnalysis_daily]
@var_thedate VARCHAR(30)
AS
BEGIN
declare @THEDATE VARCHAR(30)
IF @var_thedate IS NULL
BEGIN
SET @var_thedate=CONVERT(VARCHAR(30),GETDATE()-1,112);
END
SET @THEDATE=@var_thedate;
DELETE FROM RPT_IM_USERINFO_DAILY WHERE THEDATE=@THEDATE;
INSERT RPT_IM_USERINFO_DAILY(THEDATE,ALLUSER,NEWUSER)
select @thedate as thedate,
count(distinct case when today>0 then userid else null end) as alluser,
count(distinct case when dates=0 then userid else null end) as newuser
from
(
select userid,
count(CASE WHEN thedate>=@thedate then null else thedate end) as dates,
count(case when thedate=@thedate then thedate else null end) as today
from FACT
group by userid
)as fact
GO
测试结果为30ms以下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11