在很多的资料中都描述说SQLSERVER的存储过程较普通的SQL语句有以下优点:
存储过程只在创造时进行编译即可,以后每次执行存储过程都不需再重新编译,而我们通常使用的SQL语句每执行一次就编译一次,所以使用存储过程可提高数据库执行速度。
经常会遇到复杂的业务逻辑和对数据库的操作,这个时候就会用SP来封装数据库操作。当对数据库进行复杂操作时(如对多个表进行 Update,Insert,Query,Delete时),可将此复杂操作用存储过程封装起来与数据库提供的事务处理结合一起使用。可以极大的提高数据 库的使用效率,减少程序的执行时间,这一点在较大数据量的数据库的操作中是非常重要的。在代码上看,SQL语句和程序代码语句的分离,可以提高程序代码的 可读性。
存储过程可以设置参数,可以根据传入参数的不同重复使用同一个存储过程,从而高效的提高代码的优化率和可读性。
安全性高,可设定只有某此用户才具有对指定存储过程的使用权存储过程的种类:
系统存储过程:以sp_开头,用来进行系统的各项设定.取得信息.相关管理工作,如 sp_help就是取得指定对象的相关信息。
扩展存储过程 以XP_开头,用来调用操作系统提供的功能
exec master..xp_cmdshell ‘ping 10.8.16.1’
用户自定义的存储过程,这是我们所指的存储过程常用格式
模版:Create procedure procedue_name [@parameter data_type][output]
[with]{recompile|encryption} as sql_statement
解释:output:表示此参数是可传回的
with {recompile|encryption} recompile:表示每次执行此存储过程时都重新编译一次;encryption:所创建的存储过程的内容会被加密。
但是最近我们项目组中有人写了一个存储过程,其计算时间为1个小时47分钟,而有的时候运行时间都超过了两个小时,同事描述说如果将存储过程中的语句拿出来直接运行也就10分钟左右就运行完毕,我没当回事,但是今天我自己写的存储过程也遇到了这个问题,在查找资料后原因终于找到了原因,原来是Parameter sniffing问题。
下面看我是如何将运行一个小时以上的存储过程优化成在一分钟之内完成的:
原存储过程
CREATE PROCEDURE [dbo].[pro_ImAnalysis_daily]
@THEDATE VARCHAR(30)
AS
BEGIN
IF @THEDATE IS NULL
BEGIN
SET @THEDATE=CONVERT(VARCHAR(30),GETDATE()-1,112);
END
DELETE FROM RPT_IM_USERINFO_DAILY WHERE THEDATE=@THEDATE;
INSERT RPT_IM_USERINFO_DAILY (THEDATE,ALLUSER,NEWUSER)
SELECT AA.THEDATE,ALLUSER,NEWUSER
FROM
( ( SELECT THEDATE,COUNT(DISTINCT USERID) ALLUSER
FROM FACT
WHERE THEDATE=@THEDATE
GROUP BY THEDATE
) AA
LEFT JOIN
(SELECT THEDATE,COUNT(DISTINCT USERID) NEWUSER
FROM FACT T1
WHERE NOT EXISTS(
SELECT 1
FROM FACT T2
WHERE T2.THEDATE<@THEDATE
AND T1.USERID=T2.USERID)
AND T1.THEDATE=@THEDATE
GROUP BY THEDATE
) BB
ON AA.THEDATE=BB.THEDATE);
GO
每日执行:exec pro_ImAnalysis_daily @thedate=null
耗时:1小时47分~2小时13分
经过查找资料,原因如下(由于源文是一篇英文,有些地方写的我不是特别清楚,原文见http://groups.google.com/group/microsoft.public.sqlserver.server/msg/ad37d8aec76e2b8f?hl=en&lr=&ie=UTF-8&oe=UTF-8):
在SQL Server中有一个叫做 “Parameter sniffing”的特性。SQL Server在存储过程执行之前都会制定一个执行计划。在上面的例子中,SQL在编译的时候并不知道@thedate的值是多少,所以它在执行执行计划的时候就要进行大量的猜测。假设传递给@thedate的参数大部分都是非空字符串,而FACT表中有40%的thedate字段都是null,那么SQL Server就会选择全表扫描而不是索引扫描来对参数@thedate制定执行计划。全表扫描是在参数为空或为0的时候最好的执行计划。但是全表扫描严重影响了性能。
假设你第一次使用了Exec pro_ImAnalysis_daily @thedate=’20080312’那么SQL Server就会使用20080312这个值作为下次参数@thedate的执行计划的参考值,而不会进行全表扫描了,但是如果使用@thedate=null,则下次执行计划就要根据全表扫描进行了。
有两种方式能够避免出现“Parameter sniffing”问题:
(1)通过使用declare声明的变量来代替参数:使用set @variable=@thedate的方式,将出现@thedate的sql语句全部用@variable来代替。
(2) 将受影响的sql语句隐藏起来,比如:
a) 将受影响的sql语句放到某个子存储过程中,比如我们在@thedate设置成为今天后再调用一个字存储过程将@thedate作为参数传入就可以了。数据分析培训
b) 使用sp_executesql来执行受影响的sql。执行计划不会被执行,除非sp_executesql语句执行完。
c) 使用动态sql(”EXEC(@sql)”来执行受影响的sql。
采用(1)的方法改造例子中的存储过程,如下:
ALTER PROCEDURE [dbo].[pro_ImAnalysis_daily]
@var_thedate VARCHAR(30)
AS
BEGIN
declare @THEDATE VARCHAR(30)
IF @var_thedate IS NULL
BEGIN
SET @var_thedate=CONVERT(VARCHAR(30),GETDATE()-1,112);
END
SET @THEDATE=@var_thedate;
DELETE FROM RPT_IM_USERINFO_DAILY WHERE THEDATE=@THEDATE;
INSERT RPT_IM_USERINFO_DAILY (THEDATE,ALLUSER,NEWUSER)
SELECT AA.THEDATE,ALLUSER,NEWUSER
FROM
( ( SELECT THEDATE,COUNT(DISTINCT USERID) ALLUSER
FROM FACT
WHERE THEDATE=@THEDATE
GROUP BY THEDATE
) AA
LEFT JOIN
(SELECT THEDATE,COUNT(DISTINCT USERID) NEWUSER
FROM FACT T1
WHERE NOT EXISTS(
SELECT 1
FROM FACT T2
WHERE T2.THEDATE<@THEDATE
AND T1.USERID=T2.USERID)
AND T1.THEDATE=@THEDATE
GROUP BY THEDATE
) BB
ON AA.THEDATE=BB.THEDATE);
GO
测试执行速度为10分钟,我又检查了一下这个SQL,发现这个SQL有问题,这个SQL使用了not exists,在一个大表里面使用not exists是不太明智的,所以,我又对这个sql进行了改进,改成如下:
ALTER PROCEDURE [dbo].[pro_ImAnalysis_daily]
@var_thedate VARCHAR(30)
AS
BEGIN
declare @THEDATE VARCHAR(30)
IF @var_thedate IS NULL
BEGIN
SET @var_thedate=CONVERT(VARCHAR(30),GETDATE()-1,112);
END
SET @THEDATE=@var_thedate;
DELETE FROM RPT_IM_USERINFO_DAILY WHERE THEDATE=@THEDATE;
INSERT RPT_IM_USERINFO_DAILY(THEDATE,ALLUSER,NEWUSER)
select @thedate as thedate,
count(distinct case when today>0 then userid else null end) as alluser,
count(distinct case when dates=0 then userid else null end) as newuser
from
(
select userid,
count(CASE WHEN thedate>=@thedate then null else thedate end) as dates,
count(case when thedate=@thedate then thedate else null end) as today
from FACT
group by userid
)as fact
GO
测试结果为30ms以下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31