都在说大数据,但你知道大数据的核心价值是什么吗
都说现在是大数据时代,那么大数据是什么?大数据有什么用?大数据最核心的价值是什么呢?其实大数据的核心价值很简单,就是了解用户行为(更简单说就是了解用户行为习惯)。今天我们就细说大数据的核心价值。
一、什么是元数据(Metadata)?
元数据是对数据本身进行描述的数据,或者说,它不是对象本身,它只描述对象的属性。
比如,一幅画本身,是数据。而这幅画的作者、完成时间、尺寸、价格、类型等等,就是它的元数据。
又如,你妈给你介绍个相亲对象,你并不认识他,但你妈告诉你他的年龄、身高、体重、体貌特征、家庭背景、收入、爱好特长,你心里也就对他有了印象。即便你还不认识他。
元数据的价值
能够从侧面描述对象
可以结构化、信息化
什么意思呢?
举个栗子,要判断一幅画的价值,除了专家直接通过画的艺术性来评价外,还可以通过元数据来判断。
这幅画是名家的还是二流画家的?这幅画是作者在他创作鼎盛时期的作品,还是在年轻时的作品?这幅画是作者擅长的类型还是他不熟悉的?
用这些元数据描述的信息,我们居然就能把这幅画的价值算得八九不离十。这肯定会存在误差,但这个判断方法也非常合理。
二、那用元数据描述对象有什么意义呢?
这就是在大数据上产生的价值:对于非结构化的、非量化的对象,结构化的元数据可以用以快速计算和判断。
再举个栗子,你妈给你找了100个相关对象,手里有100份资料,你要是一个一个去仔细翻阅,那几天都翻不完。但你告诉你妈,高学历的可能意味着素质很高, 高收入的可能意味着能力很强,所以先把低学历低收入的筛掉,剩下的再依据身高体重年龄这些信息排序,那效率就高得多了。
注意,这样的方法仍然会有失误的,说不定真爱就在被筛掉的人里。但这样的概率很低很低了。
这效果在相亲里似乎还不太明显,但大数据在真正产品应用中,产生的效果就天翻地覆了。
三、大数据应用阶段一:辅助产品
刚开始比较简单,就是用以辅助产品人员和市场人员做判断。
过去的实体产品做一次调研非常麻烦。比如饮料公司,调研人员要用各种方式观看他们喝饮料的场景和步骤。
问卷是最常见的,但不准。所以会组织各种各样专业的现场试验,要搭建环境(一般是有单面玻璃或摄像头的)、邀请志愿者,然后引导他们按照日常的习惯去完成一些操作。
比如这样的通过摄像头监视观察室,显然这种办法非常笨重、成本高。
现在的互联网产品根本不需要这么麻烦。用户所有的使用数据、行为,都是记录在案的,想知道什么,瞬间就能分析出来。
过去想知道用户有没有做一件事,比如有没有用过这个功能?太难了。
现在呢,就问点击这个行为,点击了几下、点击在哪里,什么时候点的,甚至这是在什么地方点的、点击之后又做了什么,一清二楚。
用户平时用不用这个功能、怎么用这个功能,也就一目了然。
对于产品设计者来说,这是至关重要的数据。而且,这是完整的数据!如果是互联网产品,那么我知道的是所有用户的数据,不是过去传统行业产品的样本数据。
腾讯知道所有微信用户有多少用朋友圈、知道这些用户每天都发几条朋友圈、知道这些用户每天都发了什么。每一个数据都是真实可用的。(过去发行量再大的报纸也很难知道读者性别,然而现在再小的微信公众号也可以实时获取。)
在实体产品的行业,随着未来整个产品从生产到销售到使用的信息化,大数据也会渐渐起到更大的作用。过去卖一瓶水,可能到某个超市就断掉了,我不知道这瓶水被 谁买走了。但现在在天猫卖的一瓶水,我知道对方这个用户是每个月买十箱水的,他的地址是某个高档餐厅,那我就知道这瓶水的目标受众是谁了。
这是元数据的价值所在。
所以说,大数据的第一阶段是:辅助产品设计者做判断、让产品制造者更好地满足用户。
这时候的大数据主要是来为产品提供支持,产品再应用于用户。
四、大数据应用阶段二:创造价值
在数据的数量和质量达到一定程度后,事情开始变化了。元数据将不仅作为产品的辅助,而是变成了最有价值的产生本身。
很简单的,全中国最熟悉老百姓消费习惯的谁吗?是哪个科研机构吗?都不是,是淘宝。
拥有最全面的个人信用信息的,是人事局吗?是银行吗?NO!NO!NO,是支付宝。
道理也简单得很,所有这些行为(消费、交易)发生在了这个平台上,而这个平台又有所有数据的记录,那这些数据就能产生巨大的价值。
你以为做医疗健康这方面的产品仅仅是关注你的健康吗?并不是,他们同时还能够记录你所有的体征,这是第一线的临床数据。
此时,大数据本身已经成为了产品,可以输出有价值的内容。
消费行为数据,卖给广告商,广告商就可以定向给你投送广告;信用数据,卖给银行,银行就可以判断出你的信用程度;健康数据,卖给保险公司…你懂的(当然,我们不提倡这样做)。
近几年,互联网公司已经能够对全国各领域的市场,给出最有说服力的统计报告了,这些之前可都是政府做的:
淘宝网发布《中国互联网消费趋势报告》
携程旅行网发布《2014年旅游者调查报告》
滴滴携两大机构发布首份《智能出行年度报告》
其实出售数据是比较愚蠢的方法,数据提供的内容完全可以创造出新的产品。尤其像O2O 这样的产品/服务,上游是服务提供者和资源,下游是用户,都能够有价值可以发掘。
比如,在纽带线CRM系统中,通过商务社交功能,了解下游企业间的供求信息,通过社交,促进企业间的交易合作,定向把企业间的供求准确配对,减少企业的成本,这就充分体现了用户数据产生价值。这也是他这个商务社交功能的核心思想了。
听说饿了么在尝试一项新服务,就是为餐馆提供食材。一听吓一跳,你TM在逗我么?但后来想想的确是再合理不过。除了饿了么还有谁更能清楚某块区域的餐品售卖数据呢?这地方萝卜白菜卖得多、有多少量,饿了么清楚得很,跟农场谈合作,可以很好地把控上游渠道。
这阶段的大数据,已经可以成为产品,为用户直接服务。
从另一个角度看,不知道你发现没,通过我们行为数据这些元数据,我们已经在慢慢被量化的信息给描述出来了。看到这些数字(一年花了多少钱、在哪方面花的钱等等)已经对这个人可以有相对粗糙的认识了。
而大数据最终的形态开始初现。
五、大数据应用阶段三:塑造我们
可能我们对对行为数据表示不屑。你知道我在网上买了点东西、跟谁微信聊了几句话、去百度随便查了点东西,就能知道我是什么人了?
别说,还真可以。只要数据保质保量。
我们举个栗子,你一个月没买避孕套这两天突然买了三盒,那可能是你要跟异地恋的女朋友见面了;你微信跟异地的某个妹子聊得特别多、经常还视频,那这大概就是你异地的女朋友;你在百度一直搜东南亚的机票和旅行攻略,那你可能要去那里玩。
就是这么简单的三条元数据,我们可以大楖推测出来,最近你要跟女朋友一起去东南亚旅行。
说实话,做这么基础的逻辑推断,比下围棋容易多了。
这是说明元数据能够推理信息的逻辑性。而对于可获取的元数据,也越来越多了。
你打电话时,可以知道你给谁打(妇科医生?要生孩子了。律师?最近有官司。)
你买东西时,可以知道你的消费能力、家庭状况、喜好甚至性格(高端笔记本?爱玩游戏。吉他、钢琴?喜欢音乐。)
你出门消费时,可以知道你的生活习惯和个人情况(健身房?应该很健康。经常大保健?可能身体比较虚。)
你加别人微信时,可以知道你的社交圈子(认识李开复?应该不是一般人。通讯录里都是老师?那可能也是一名教师。)
作为这些产品的数据的拥有者,完全不需要派个私家侦探来跟踪你。只需要等你自己乖乖把这些数据送上来。
春节的时候,支付宝为什么要和微信争抢小额支付和社交场景的支付?不是为了那点手续费,就是为了它缺失的社交支付这一块。这块数据的价值,超乎你想象。
未来我们每个人的衣食住行、生活起居,都将有大量的数据记录。我们的行为会变成一串串数字成为可量化的数据,成为描述我们的信息。我们工作用纽带线CRM、吃饭用饿了么、打车用滴滴、搜东西用百度、社交用微信,每一步都被记了下来。
不信你可以翻出你历史所有在搜索引擎的搜索记录来,对你生活的描述绝对比你自己的日记都要真实得多。
这些数据将被转换成有价值的商业数据,来描述你各方面的信息。你喜欢黑色的衣服、你喜欢胸大的妹子、你比较文艺、你有高度近视、你最近刚失恋…… 关于你,可能这些数据比你自己都要清楚。
最终,我们本身就是可以被量化的大数据对象,不存在多层的逻辑了。
这样的未来自然有利有弊。利是我们无处不在享受着大数据带来的便利,我们看到的每一条广告都会是我们自己喜欢的,我们查的每一条搜索记录都是根据我们特点来推荐的,我们在加好友时系统甚至都可以说他是不是会跟我们合得来。
弊在于,我们的隐私就暴露无疑。只要数据的拥有者想做点坏事,那真的一切皆有可能了。
大数据绝不会止步在为决策仅仅提供帮助,它的终极形态就是可以用海量的数据描述我们一个个具体的个体。当达到这一步时,现在所谓的市场调研、用户分析就太小儿科不过了。
因为,大数据已经完全能够塑造出我们了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31