我们真正追求的,是“大”数据还是更智慧的数据
提到大数据,难免要说到下面这几个V:规模volume、速度velocity、种类variety、真实性veracity和价值value。
仔细关照这些特点,会发现两个问题。数据的规模、速度和种类指的是大数据生成过程和如何捕捉和存储数据,真实性和价值指的是数据的质量和有用性。数据管理对很多公司来说是一个主要的挑战,虽然小数据也在受到数据质量和管理问题的困扰。
另外,数字世界正在生成来自不同数据源的新数据集,其中多数来自网络,包含结构化数据和非结构化数据。
智慧数据(真实性和价值)的目的就是要过滤噪声,使用有价值的数据,这可以有效地帮助企业解决业务难题。
企业应用了智慧数据,就可以说数据并不是越大越好。
对于一个预测模型来说,简单的随机样本是否足够?
查询五百万列和查询十亿列对预测分析模型的准确性来说有什么边际影响?从统计学角度来讲,边际影响完全可以忽略。
那么,大数据如何变成智慧数据呢?
没有一成不变的公式,但你必须要更好地理解数据。分析数据的质量不止能让公司变成数据驱动,也能让它变成创造力驱动。这就是大数据走向智慧数据的路径。
和数据打交道的人不是要对着一堆数据,猜想为什么有的数据有用,有的就没用,而是要将数据人性化,这样才能让数据说话。这是未来分析数据数量和质量的技巧。公司必须要让数据会说话,尽可能地消除偏见。
数据多还不够。问题的关键在于研究数据,比如数据是不是均匀而规律的?它能不能被轻松地提取和分析?数据的变化很多吗?有用的数据是不是蕴藏在其他不相关的信息里?
对数据的解释不应该是随机的,它应该指向明确的解决方案和可执行的任务。之后,还应该分析解释数据带来的价值。
只有在数据能够优化和自动化解决方案和解决问题时(数据驱动的决策制定),对数据的收集和探索才是有意义的。
例子有很多,比如网站只更改了按钮的颜色吗,就能带来更高的转化率。
因此,目标不应该仅限于把通过数据发生的各种行为连接在一起,去理解它们,更应该包括提升现有流程的性能,或者预测下一次成果。
这也就意味着焦点不应该是收集大规模数据,而应该把数据的环境都呈现出来。数据需要在固定的环境下进行理解和解读。比如,如果你不知道用户点击链接之后做了什么,只知道他点击了链接,那有什么用呢?
这意味着大数据已死吗?不完全是。理解和拥有完成的用户行为视图至关重要,从这一点上来说,大数据扮演着重要的角色。
如果跨交互渠道的实时用户行为的分析受到人口和地理因素的限制,那么大数据就不可丢弃。你应该让数据变大。不过,如果机器学习算法能够通过使用少量数据集给出产品推荐,那么为什么还要采用大数据呢?
数据科学并不一定意味着凡事都要靠大数据。数据科学是要我们知道什么时候用瑞士军刀,什么时候用电锯。
我们的目标应该是将企业文化从数据管理(管理各种各样的数据)向数据学习(利用数据背后的所有价值)转变。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21