京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS、spss进行Durbin-Watson检验
1.首先要知道你用的哪一个SAS子程序。
2.如果是PROC NLIN,那么非常遗憾,它没有现成的DW统计量,但是你可以在OUTPUT选项中在输出数据集里面输出残差。
3.DW实际上是对残差做一阶自相关判断,因此你完全可以根据公式用SAS中的DATA步来完成代码开发,参考代码如下:
data nkwilling;
do i=1 to 100;
e=normal(0);
output;
end;
run;
data DW;
set nkwilling end=last;
e_lag=lag(e);
e_dif=sum(e,-e_lag);
t1=e_dif*e_dif;
t2=e*e;
if _n_=1 then do;dw1=t1;dw2=t2;end;
else do;dw1+t1;dw2+t2;end;
if last then dw=dw1/dw2;
run;
再参考DW有关自相关的范围,我记得好像是0-4,作出判断。
匆忙写的,你再参考有关书籍做一下修改。
sas 和spss都能做
检验图就是残差图
以预测值Y为横轴,以y与预测值Y之间的误差et为纵轴(或学生化残差与拟和值或一个自变量),绘制残差的散点图。如果散点呈现出明显的规律性,则认为存在自相关性或者非线性或者非常数方差的问题。
DW是0<D<4,统计学意义如下:
①当残差与自变量互为独立时,D=2 或 DW 越接近2,判断无自相关性把握越大。
②当相邻两点的残差为正相关时,D<2,DW 越接近于0,正自相关性越强。
③当相邻两点的残差为负相关时,D>2,DW 越接近于4,负自相关性越强。
判断。根据样本容量n 和解释变量的数目p 查DW 分布表,得下临界值L D 和上临界值U D ,
并依下列准则判断扰动项的自相关情形。
(1)如果0<DW< L D ,则拒绝零假设,扰动项存在一阶正自相关。DW 越接近于0,正自相关
性越强。
(2)如果L D <DW< U D ,则无法判断是否有自相关。
(3)如果U D <DW<4- U D ,则接受零假设,扰动项不存在一阶正自相关。DW 越接近2,判断
无自相关性把握越大。
(4)如果4- U D <DW<4- L D ,则无法判断是否有自相关。
(5) 如果4- L D <DW<4,则拒绝零假设,扰动项存在一阶负自相关。DW 越接近于4,负自
相关性越强。
检验不难,据不完全统计,PROC REG/AUTOREG/MODEL都有选项输出统计量和p-值。你要是非线性的,可以用PROC MODEL。其实Durbin-Watson检验的统计量也可以利用残差根据公式手工算。
但是检验图是个什么概念不才就一点也不懂了,一个模型不就只有一个Durbin-Watson值吗?
option nocenter;
dm ‘log;clear;output;clear’;
proc import datafile=”c:\example.xls” replace
out=one;
getnames=yes;
data one; set one;
proc nlin data=one;
parms b1=0.2 b2=-0.2 b3=-0.4 ;
AOld = a1;anew=a2;
hdold=hd1;temp = AOld / ANew;
do anew = (1+a1) to a2 by 1;
HdNew = exp(temp*log(hdold)+(1-temp)*(b1+b2/aold+b3*hdold)); AOld = ANew;
hdold=hdnew;
end;
model hd2 = HdNew;
output out=two predicted=hd2hat;
我应该如何在上面代码中添加Durbin-Watson检验呢?
用proc reg就好了,在option那里加一个“DW
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30