
python 异常类型_python 异常_python异常处理
1、NameError:尝试访问一个未申明的变量
>>> v
NameError: name ‘v’ is not defined
2、ZeroDivisionError:除数为0
>>> v = 1/0
ZeroDivisionError: int division or modulo by zero
3、SyntaxError:语法错误
>>> int int
SyntaxError: invalid syntax (<pyshell#14>, line 1)
4、IndexError:索引超出范围
>>> List = [2]
>>> List[3]
Traceback (most recent call last):
File “<pyshell#18>”, line 1, in <module>
List[3]
IndexError: list index out of range
5、KeyError:字典关键字不存在
>>> Dic = {‘1′:’yes’, ‘2’:’no’}
>>> Dic[‘3’]
Traceback (most recent call last):
File “<pyshell#20>”, line 1, in <module>
Dic[‘3’]
KeyError: ‘3’
6、IOError:输入输出错误
>>> f = open(‘abc’)
IOError: [Errno 2] No such file or directory: ‘abc’
7、AttributeError:访问未知对象属性
>>> class Worker:
def Work():
print(“I am working”)
>>> w = Worker()
>>> w.a
Traceback (most recent call last):
File “<pyshell#51>”, line 1, in <module>
w.a
AttributeError: ‘Worker’ object has no attribute ‘a’
8、ValueError:数值错误
>>> int(‘d’)
Traceback (most recent call last):
File “<pyshell#54>”, line 1, in <module>
int(‘d’)
ValueError: invalid literal for int() with base 10: ‘d’
9、TypeError:类型错误
>>> iStr = ’22’
>>> iVal = 22
>>> obj = iStr + iVal;
Traceback (most recent call last):
File “<pyshell#68>”, line 1, in <module>
obj = iStr + iVal;
TypeError: Can’t convert ‘int’ object to str implicitly
10、AssertionError:断言错误
>>> assert 1 != 1
Traceback (most recent call last):
File “<pyshell#70>”, line 1, in <module>
assert 1 != 1
AssertionError
下面增加一些本人工作过程中遇到过的异常:
11、MemoryError:内存耗尽异常
12、NotImplementedError:方法没实现引起的异常
示例:
定义一个类,一个接口方法action,如果直接调用action则抛NotImplementedError异常,这样做的目的通常是用来模拟接口
13、LookupError:键、值不存在引发的异常
LookupError异常是IndexError、KeyError的基类
如果你不确定数据类型是字典还是列表时,可以用LookupError捕获此异常
14、StandardError 标准异常。
除StopIteration, GeneratorExit, KeyboardInterrupt 和SystemExit外,其他异常都是StandarError的子类。
异常处理有别于错误检测:
错误检测与异常处理区别在于:错误检测是在正常的程序流中,处理不可预见问题的代码,例如一个调用操作未能成功结束
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05