京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python 异常类型_python 异常_python异常处理
1、NameError:尝试访问一个未申明的变量
>>> v
NameError: name ‘v’ is not defined
2、ZeroDivisionError:除数为0
>>> v = 1/0
ZeroDivisionError: int division or modulo by zero
3、SyntaxError:语法错误
>>> int int
SyntaxError: invalid syntax (<pyshell#14>, line 1)
4、IndexError:索引超出范围
>>> List = [2]
>>> List[3]
Traceback (most recent call last):
File “<pyshell#18>”, line 1, in <module>
List[3]
IndexError: list index out of range
5、KeyError:字典关键字不存在
>>> Dic = {‘1′:’yes’, ‘2’:’no’}
>>> Dic[‘3’]
Traceback (most recent call last):
File “<pyshell#20>”, line 1, in <module>
Dic[‘3’]
KeyError: ‘3’
6、IOError:输入输出错误
>>> f = open(‘abc’)
IOError: [Errno 2] No such file or directory: ‘abc’
7、AttributeError:访问未知对象属性
>>> class Worker:
def Work():
print(“I am working”)
>>> w = Worker()
>>> w.a
Traceback (most recent call last):
File “<pyshell#51>”, line 1, in <module>
w.a
AttributeError: ‘Worker’ object has no attribute ‘a’
8、ValueError:数值错误
>>> int(‘d’)
Traceback (most recent call last):
File “<pyshell#54>”, line 1, in <module>
int(‘d’)
ValueError: invalid literal for int() with base 10: ‘d’
9、TypeError:类型错误
>>> iStr = ’22’
>>> iVal = 22
>>> obj = iStr + iVal;
Traceback (most recent call last):
File “<pyshell#68>”, line 1, in <module>
obj = iStr + iVal;
TypeError: Can’t convert ‘int’ object to str implicitly
10、AssertionError:断言错误
>>> assert 1 != 1
Traceback (most recent call last):
File “<pyshell#70>”, line 1, in <module>
assert 1 != 1
AssertionError
下面增加一些本人工作过程中遇到过的异常:
11、MemoryError:内存耗尽异常
12、NotImplementedError:方法没实现引起的异常
示例:
定义一个类,一个接口方法action,如果直接调用action则抛NotImplementedError异常,这样做的目的通常是用来模拟接口
13、LookupError:键、值不存在引发的异常
LookupError异常是IndexError、KeyError的基类
如果你不确定数据类型是字典还是列表时,可以用LookupError捕获此异常
14、StandardError 标准异常。
除StopIteration, GeneratorExit, KeyboardInterrupt 和SystemExit外,其他异常都是StandarError的子类。
异常处理有别于错误检测:
错误检测与异常处理区别在于:错误检测是在正常的程序流中,处理不可预见问题的代码,例如一个调用操作未能成功结束
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04