数据可视化”可以帮助用户理解数据,一直是热门方向。
图表是”数据可视化”的常用手段,其中又以基本图表—-柱状图、折线图、饼图等等—-最为常用。
用户非常熟悉这些图表,但如果被问道,它们的特点是什么,最适用怎样的场合(数据集)?恐怕答得上来的人就不多了。
本文是电子书《Data Visualization with JavaScript》第一章的笔记,总结了六种基本图表的特点和适用场合,非常好地回答了上面的问题。
序言
进入正题之前,先纠正一种误解。
有人觉得,基本图表太简单、太原始,不高端,不大气,因此追求更复杂的图表。但是,越简单的图表,越容易理解,而快速易懂地理解数据,不正是”数据可视化”的最重要目的和最高追求吗?
所以,请不要小看这些基本图表。因为用户最熟悉它们,所以只要是适用的场合,就应该考虑优先使用。
一、柱状图(Bar Chart)
柱状图是最常见的图表,也最容易解读。
它的适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较。年销售额就是二维数据,”年份”和”销售额”就是它的两个维度,但只需要比较”销售额”这一个维度。
柱状图利用柱子的高度,反映数据的差异。肉眼对高度差异很敏感,辨识效果非常好。柱状图的局限在于只适用中小规模的数据集。
通常来说,柱状图的X轴是时间维,用户习惯性认为存在时间趋势。如果遇到X轴不是时间维的情况,建议用颜色区分每根柱子,改变用户对时间趋势的关注。
上图是英国足球联赛某个年度各队的赢球场数,X轴代表不同球队,Y轴代表赢球数。
二、折线图(Line Chart)数据
折线图适合二维的大数据集,尤其是那些趋势比单个数据点更重要的场合。
它还适合多个二维数据集的比较。
上图是两个二维数据集(大气中二氧化碳浓度,地表平均气温)的折线图。
三、饼图(Pie Chart)
饼图是一种应该避免使用的图表,因为肉眼对面积大小不敏感。
上图中,左侧饼图的五个色块的面积排序,不容易看出来。换成柱状图,就容易多了。
一般情况下,总是应该用柱状图替代饼图。但是有一个例外,就是反映某个部分占整体的比重,比如贫穷人口占总人口的百分比。
四、散点图(Scatter Chart)
散点图适用于三维数据集,但其中只有两维需要比较。
上图是各国的医疗支出与预期寿命,三个维度分别为国家、医疗支出、预期寿命,只有后两个维度需要比较。
为了识别第三维,可以为每个点加上文字标示,或者不同颜色。
五、气泡图(Bubble Chart)
气泡图是散点图的一种变体,通过每个点的面积大小,反映第三维。
上图是卡特里娜飓风的路径,三个维度分别为经度、纬度、强度。点的面积越大,就代表强度越大。因为用户不善于判断面积大小,所以气泡图只适用不要求精确辨识第三维的场合。
如果为气泡加上不同颜色(或文字标签),气泡图就可用来表达四维数据。比如下图就是通过颜色,表示每个点的风力等级。
六、雷达图(Radar Chart)
雷达图适用于多维数据(四维以上),且每个维度必须可以排序(国籍就不可以排序)。但是,它有一个局限,就是数据点最多6个,否则无法辨别,因此适用场合有限。
下面是迈阿密热火队首发的五名篮球选手的数据。除了姓名,每个数据点有五个维度,分别是得分、篮板、助攻、抢断、封盖。
画成雷达图,就是下面这样。
面积越大的数据点,就表示越重要。很显然,勒布朗·詹姆斯(红色区域)是热火队最重要的选手。
需要注意的时候,用户不熟悉雷达图,解读有困难。使用时尽量加上说明,减轻解读负担。
CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29