大数据能干啥
这两年大数据这个词特别火,传统企业IT部门都纷纷在探索上线大数据。当然,过去的十年,传统企业IT部门也都纷纷上线了商业智能。
很多处于云里雾里的传统企业IT人员,心中第一个困惑就是:大数据和商业智能有啥本质区别。
一、大数据和商业智能有啥本质区别
我先抛开数据、抛开业务应用,就说大数据技术平台和商业智能技术平台的本质区别,那就是技术架构的升级。如果你发现你运行一个报表需要3-5天,而且不管升级单台服务器硬件,还是扩展服务器集群,性能提升并不明显,那说明,技术架构不能支撑现有需求了,需要升级技术架构了。那说明你需要考虑上马大数据技术平台了。
二、大数据为啥这几年火了
大数据为啥这几年火了,有两方面驱动,一方面是数据量,一方面是数据类型。
从数据量来说,因为移动手机人手一部随时随地产生信息,智能设备&物联网、产业链打通、互联网社区、电子商务这些新技术新应用的产生,导致数据量激增。如果企业没有搞这些新技术新应用,那数据量只是随企业业务规模增大而增大。
从数据类型来说,过去企业一般只关注应用系统产生的关系型数据,或者是EXCEL产生的结构性数据。但是随着智能硬件、互联网社区的产生,非结构性信息更多,如照片、视频、音频、日志、聊天记录、地理信息...。过去我们不关注这些信息,但是随着我们应用的需求,如生物识别、声音识别、图像识别、视频识别、用户地理周边价值挖掘、社交信息价值挖掘,我们需要收集这些信息,也需要分析这些信息。而过去专注结构性数据的商业智能技术平台显然就不适合来高性能处理这些非结构化信息。如果企业没有收集和处理这些非结构化信息的需求,当然也不存在真正的大数据技术平台购买需求。
三、大数据能干啥
大数据技术平台这几年发展飞速,从Hadoop的海量批处理作业,Spark又往前走了一步可以更多的利用内存来计算,而Storm更进一步可以数据边导过来边处理。这就让大数据的计算性能、处理性能高很多,不需要我们再等待几天来看结果了。这样就能满足咱们实时的应用需求,比如说搜索关联推荐想通过用户上下文的点击大数据来实时推荐,过去无法满足,现在可以了。这比过去商业智能OLAP离线数据处理要高很多。
但是,大数据应用技术这么多年并无长足进步。我们的大数据技术平台只是让更大量的数据可以高性能的存储和计算了,但如何高价值利用数据,我们目前的应用技术还不支撑。
大数据利用,目前还主要停留在报表查询与统计,只不过这么多数据、这么不同类型的数据,处理性能更高。但是要注意,需要你自己对业务很精通很洞察,你才能设计出有高价值含量的报表,大数据技术平台只是把数据给你按你的要求输出出来,还得你自己分析数据到底有啥价值。所以说啊,你现在购买一套大数据平台,你最后干的事还是做报表、分析报表。
再往前走一步,现在利用最多的就是搜索关联推荐,这就有点人工智能的意味了,至少相关性算法是要利用上了。如果你没啥需要关联性信息展示的,那有这个功能你也是白浪费。
现在大数据应用技术热点,今年都扎在了深度学习方面,主要在分类、聚类、回归这些算法上。这些算法在商业智能时代就有了,但是没有360度海量数据来训练算法、调整参数,算法的演进在过去并不快。现在有了移动&智能硬件&物联网、产业链信息打通、互联网社区和电子商务,360度的海量数据有了,数据丰富了,算法训练就进化快多了。而且现在分布式存储和计算中间件平台的兴起,为海量数据的高速存储和计算提供了很好的基础支撑,可以高性能运行起来了,所以近几年在深度学习的精准度方面进展不错。
大数据应用技术,目前在世界最前沿搞的是模式识别,就是没有模式,机器从从海量数据中24小时不停歇计算,根据初始算法模型不断进行数据训练,自动调节参数,再继续往前演进,这样慢慢会自己形成最佳模式甚至会衍生出变异模式。这就真正智能化了。可惜,这种机器学习模式识别,目前还无法普及性商用,只能在某些特定领域特定训练。
四、传统企业是否要购买大数据平台
如果你满意现在的商业智能处理性能、成本,那么你不需要上马大数据平台。因为那表示你的数据量并不大,现有商业智能技术平台能够支撑。
如果你过去就没做过商业智能项目,那么现在上马大数据平台,我个人觉得无所谓,可以上可以不上,但即使是上,过去搞商业智能的步骤,该弄的还得弄,一步也少不了。而且你仍然别指望数据输出、知识黄金输出。别做春秋大梦,该设计业务报表、该分析解读业务报表,还得搞。大数据技术平台只是让更多的数据可以高性能存储和计算而已。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30