大数据能干啥
这两年大数据这个词特别火,传统企业IT部门都纷纷在探索上线大数据。当然,过去的十年,传统企业IT部门也都纷纷上线了商业智能。
很多处于云里雾里的传统企业IT人员,心中第一个困惑就是:大数据和商业智能有啥本质区别。
一、大数据和商业智能有啥本质区别
我先抛开数据、抛开业务应用,就说大数据技术平台和商业智能技术平台的本质区别,那就是技术架构的升级。如果你发现你运行一个报表需要3-5天,而且不管升级单台服务器硬件,还是扩展服务器集群,性能提升并不明显,那说明,技术架构不能支撑现有需求了,需要升级技术架构了。那说明你需要考虑上马大数据技术平台了。
二、大数据为啥这几年火了
大数据为啥这几年火了,有两方面驱动,一方面是数据量,一方面是数据类型。
从数据量来说,因为移动手机人手一部随时随地产生信息,智能设备&物联网、产业链打通、互联网社区、电子商务这些新技术新应用的产生,导致数据量激增。如果企业没有搞这些新技术新应用,那数据量只是随企业业务规模增大而增大。
从数据类型来说,过去企业一般只关注应用系统产生的关系型数据,或者是EXCEL产生的结构性数据。但是随着智能硬件、互联网社区的产生,非结构性信息更多,如照片、视频、音频、日志、聊天记录、地理信息...。过去我们不关注这些信息,但是随着我们应用的需求,如生物识别、声音识别、图像识别、视频识别、用户地理周边价值挖掘、社交信息价值挖掘,我们需要收集这些信息,也需要分析这些信息。而过去专注结构性数据的商业智能技术平台显然就不适合来高性能处理这些非结构化信息。如果企业没有收集和处理这些非结构化信息的需求,当然也不存在真正的大数据技术平台购买需求。
三、大数据能干啥
大数据技术平台这几年发展飞速,从Hadoop的海量批处理作业,Spark又往前走了一步可以更多的利用内存来计算,而Storm更进一步可以数据边导过来边处理。这就让大数据的计算性能、处理性能高很多,不需要我们再等待几天来看结果了。这样就能满足咱们实时的应用需求,比如说搜索关联推荐想通过用户上下文的点击大数据来实时推荐,过去无法满足,现在可以了。这比过去商业智能OLAP离线数据处理要高很多。
但是,大数据应用技术这么多年并无长足进步。我们的大数据技术平台只是让更大量的数据可以高性能的存储和计算了,但如何高价值利用数据,我们目前的应用技术还不支撑。
大数据利用,目前还主要停留在报表查询与统计,只不过这么多数据、这么不同类型的数据,处理性能更高。但是要注意,需要你自己对业务很精通很洞察,你才能设计出有高价值含量的报表,大数据技术平台只是把数据给你按你的要求输出出来,还得你自己分析数据到底有啥价值。所以说啊,你现在购买一套大数据平台,你最后干的事还是做报表、分析报表。
再往前走一步,现在利用最多的就是搜索关联推荐,这就有点人工智能的意味了,至少相关性算法是要利用上了。如果你没啥需要关联性信息展示的,那有这个功能你也是白浪费。
现在大数据应用技术热点,今年都扎在了深度学习方面,主要在分类、聚类、回归这些算法上。这些算法在商业智能时代就有了,但是没有360度海量数据来训练算法、调整参数,算法的演进在过去并不快。现在有了移动&智能硬件&物联网、产业链信息打通、互联网社区和电子商务,360度的海量数据有了,数据丰富了,算法训练就进化快多了。而且现在分布式存储和计算中间件平台的兴起,为海量数据的高速存储和计算提供了很好的基础支撑,可以高性能运行起来了,所以近几年在深度学习的精准度方面进展不错。
大数据应用技术,目前在世界最前沿搞的是模式识别,就是没有模式,机器从从海量数据中24小时不停歇计算,根据初始算法模型不断进行数据训练,自动调节参数,再继续往前演进,这样慢慢会自己形成最佳模式甚至会衍生出变异模式。这就真正智能化了。可惜,这种机器学习模式识别,目前还无法普及性商用,只能在某些特定领域特定训练。
四、传统企业是否要购买大数据平台
如果你满意现在的商业智能处理性能、成本,那么你不需要上马大数据平台。因为那表示你的数据量并不大,现有商业智能技术平台能够支撑。
如果你过去就没做过商业智能项目,那么现在上马大数据平台,我个人觉得无所谓,可以上可以不上,但即使是上,过去搞商业智能的步骤,该弄的还得弄,一步也少不了。而且你仍然别指望数据输出、知识黄金输出。别做春秋大梦,该设计业务报表、该分析解读业务报表,还得搞。大数据技术平台只是让更多的数据可以高性能存储和计算而已。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16