深入解析Python编程中JSON模块的使用_python json模块详解
这篇文章主要介绍了深入解析Python编程中JSON模块的使用,举例讲解了如何使用Python解析JSON数据,需要的朋友可以参考下
JSON编码支持的基本数据类型为 None , bool , int , float 和 str , 以及包含这些类型数据的lists,tuples和dictionaries。 对于dictionaries,keys需要是字符串类型(字典中任何非字符串类型的key在编码时会先转换为字符串)。 为了遵循JSON规范,你应该只编码Python的lists和dictionaries。 而且,在web应用程序中,顶层对象被编码为一个字典是一个标准做法。
JSON编码的格式对于Python语法而已几乎是完全一样的,除了一些小的差异之外。 比如,True会被映射为true,False被映射为false,而None会被映射为null。 下面是一个例子,演示了编码后的字符串效果:
>>> json.dumps(False)
'false'
>>> d = {'a': True,
... 'b': 'Hello',
... 'c': None}
>>> json.dumps(d)
'{"b": "Hello", "c": null, "a": true}'
>>>
如果你试着去检查JSON解码后的数据,你通常很难通过简单的打印来确定它的结构, 特别是当数据的嵌套结构层次很深或者包含大量的字段时。 为了解决这个问题,可以考虑使用pprint模块的 pprint() 函数来代替普通的 print() 函数。 它会按照key的字母顺序并以一种更加美观的方式输出。 下面是一个演示如何漂亮的打印输出Twitter上搜索结果的例子:
>>> from urllib.request import urlopen
>>> import json
>>> u = urlopen('http://search.twitter.com/search.json?q=python&rpp=5')
>>> resp = json.loads(u.read().decode('utf-8'))
>>> from pprint import pprint
>>> pprint(resp)
{'completed_in': 0.074,
'max_id': 264043230692245504,
'max_id_str': '264043230692245504',
'next_page': '?page=2&max_id=264043230692245504&q=python&rpp=5',
'page': 1,
'query': 'python',
'refresh_url': '?since_id=264043230692245504&q=python',
'results': [{'created_at': 'Thu, 01 Nov 2012 16:36:26 +0000',
'from_user': ...
},
{'created_at': 'Thu, 01 Nov 2012 16:36:14 +0000',
'from_user': ...
},
{'created_at': 'Thu, 01 Nov 2012 16:36:13 +0000',
'from_user': ...
},
{'created_at': 'Thu, 01 Nov 2012 16:36:07 +0000',
'from_user': ...
}
{'created_at': 'Thu, 01 Nov 2012 16:36:04 +0000',
'from_user': ...
}],
'results_per_page': 5,
'since_id': 0,
'since_id_str': '0'}
>>>
一般来讲,JSON解码会根据提供的数据创建dicts或lists。 如果你想要创建其他类型的对象,可以给 json.loads() 传递object_pairs_hook或object_hook参数。 例如,下面是演示如何解码JSON数据并在一个OrderedDict中保留其顺序的例子:
>>> s = '{"name": "ACME", "shares": 50, "price": 490.1}'
>>> from collections import OrderedDict
>>> data = json.loads(s, object_pairs_hook=OrderedDict)
>>> data
OrderedDict([('name', 'ACME'), ('shares', 50), ('price', 490.1)])
>>>
下面是如何将一个JSON字典转换为一个Python对象例子:
>>> class JSONObject:
... def __init__(self, d):
... self.__dict__ = d
...
>>>
>>> data = json.loads(s, object_hook=JSONObject)
>>> data.name
'ACME'
>>> data.shares
50
>>> data.price
490.1
>>>
最后一个例子中,JSON解码后的字典作为一个单个参数传递给 __init__() 。 然后,你就可以随心所欲的使用它了,比如作为一个实例字典来直接使用它。
在编码JSON的时候,还有一些选项很有用。 如果你想获得漂亮的格式化字符串后输出,可以使用 json.dumps() 的indent参数。 它会使得输出和pprint()函数效果类似。比如:
>>> print(json.dumps(data))
{"price": 542.23, "name": "ACME", "shares": 100}
>>> print(json.dumps(data, indent=4))
{
"price": 542.23,
"name": "ACME",
"shares": 100
}
>>>
对象实例通常并不是JSON可序列化的。例如:
>>> class Point:
... def __init__(self, x, y):
... self.x = x
... self.y = y
...
>>> p = Point(2, 3)
>>> json.dumps(p)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.3/json/__init__.py", line 226, in dumps
return _default_encoder.encode(obj)
File "/usr/local/lib/python3.3/json/encoder.py", line 187, in encode
chunks = self.iterencode(o, _one_shot=True)
File "/usr/local/lib/python3.3/json/encoder.py", line 245, in iterencode
return _iterencode(o, 0)
File "/usr/local/lib/python3.3/json/encoder.py", line 169, in default
raise TypeError(repr(o) + " is not JSON serializable")
TypeError: <__main__.Point object at 0x1006f2650> is not JSON serializable
>>>
如果你想序列化对象实例,你可以提供一个函数,它的输入是一个实例,返回一个可序列化的字典。例如:
def serialize_instance(obj):
d = { '__classname__' : type(obj).__name__ }
d.update(vars(obj))
return d
如果你想反过来获取这个实例,可以这样做:
# Dictionary mapping names to known classes
classes = {
'Point' : Point
}
def unserialize_object(d):
clsname = d.pop('__classname__', None)
if clsname:
cls = classes[clsname]
obj = cls.__new__(cls) # Make instance without calling __init__
for key, value in d.items():
setattr(obj, key, value)
return obj
else:
return d
下面是如何使用这些函数的例子:
>>> p = Point(2,3)
>>> s = json.dumps(p, default=serialize_instance)
>>> s
'{"__classname__": "Point", "y": 3, "x": 2}'
>>> a = json.loads(s, object_hook=unserialize_object)
>>> a
<__main__.Point object at 0x1017577d0>
>>> a.x
2
>>> a.y
3
>>>
json 模块还有很多其他选项来控制更低级别的数字、特殊值如NaN等的解析。 可以参考官方文档获取更多细节。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19