用excel完全可以代替SPSS软件
市场研究界习惯使用SPSS软件进行统计计算与分析,大家都说效果非常不错。当年刚刚创业时,我们也慕名准备使用该软件。到同行处去看了一下,不仅英文多,而且与Window不兼容(当时是这样),对于我们这些离不开微软程序的人来说,这样的学习成本太高了。后来,深入研究了一下excel程序,发现微软实在是优秀的软件公司,使用excel程序完全可以替代SPSS程序。
一、 excel中的统计函数
除了轻而易举的四则运算之外,在excel中有专门的统计函数栏目(点击插入-函数-统计),包括∶中位数(MEDIAN)、众数(MODE)、方差(DEVSQ)、标准差(STDEV)、频率(FREQUENCY)、置信区间(CONFIDENCE)、最大值(MAX)、最小值(MIN)等等,看一看帮助说明操作起来很容易。
如果一下找不到想要的函数,也不难,可以根据公式让excel计算。我不喜欢记公式,就去查一下书,然后把常用的一些统计公式做到excel某个文件中。比如,为计算应调查的样本数量,做出下表∶
1、重复抽样
概率度t
标准差σ
极限误差△
样本总数N
样本数n
B3
C3
=B3^2*C3^2/D3^2
2、不重复抽样
概率度t
标准差σ
极限误差△
样本总数N
样本数n
B5
C5
D5
E5
F5
=E5*B5^2*D5^2/(E5*D5^2+B5^2*D5^2)
等等。上表中B3、C3等符号是为了说明空格的位置才加上去了,在excel中看不到,在相应的位置输入实际的数据结果就会自动算出来。当然,用vb的frame控件来编个程序也可以,但好像太浪费大脑与电脑资源了,这样的函数已经足够解决我们的问题。其它很多统计计算用函数也可同样处理。
二、 统计数据分析
1、分析工具库加载宏
SPSS中的回归分析,在excel“工具”中也用(见本人的博客“利用excel提高工作效率”),用数组公式也可以,步骤如下∶
A. 选定数组公式输入区域
B. 输入公式
C. 按ctrl+shift+enter完成
2、聚类分析等
充分利用excel中的“筛选”、“排序”即可,在“数据”菜单中,具体操作方法请看“帮助”。在excel中做交叉分析时,可以使用“筛选”,数据的个数数字会显示在excel文件的下方。当然,如果要做大量的交叉分析,这样的办法还是很不方便的,不够自动化,很多数字要靠手工记录,这个时候,就要辛苦一些,用vb语言做一下程序了(不要怕,vb语言就是为非专业人士准备的程序语言,操作思路见本人的博客“利用excel提高工作效率”。
3、各种统计检验
在excel中,还有成对双样本均值分析、t检验:双样本等方差假设、F检验:双样本方差分析等,能够大大提高统计结论的科学性。
三、 用宏语言安排统计工作
在SPSS中,使用者没有什么自由度,完全受到人家事先编好程序的控制,遇到一些临时出现需要特别处理的问题十分被动,不妨尝试一下在Window中用vb语言编一些程序吧。我做交叉分析就用了vb语言,就是用循环句(for)而已,让统计结果自动汇总显示在数据库的某一处。当然,为了提高程序的运行速度,建议尽量利用Window本身已有的功能。比如,我会让程序先对数据库进行排序,然后利用Window已有的“筛选”功能提高计算的速度,这样,运行效率提高了很多。即使不懂这些所谓的技巧也没有关系,大不了让电脑累一些就是了,你自己可以放松一下,多一些伸懒腰的时间。
数据库的汇总统计用countif函数也可以,但太笨,如果你经常做统计工作,建议将工作“录制宏”,并进行一些改编,这样,一点击鼠标,数据的统计结果就自动出来了。这还不够,我还让excel根据统计结果自动作图,自动将统计数据库及图标拷贝到Word中(因为我们总是在Word中写分析报告)。
我们的问卷一般都录入在Word文件中,我们设置的excel数据统计程序显示的选项都是数字,没有把汉字选择项表示出来。一开始,我们都是从Word中一点一点把文字拷进excel表格中的相应位置,后来,我觉得如果已经在电脑中输入过一次,就不应该为此做第二次的手工工作,就编了一个小程序,Word中的汉字就可以直接自动拷贝到excel中来了,省了很多手工劳动。
四、 其它,象制图之类的工作,excel也相当出色,没有必要劳驾SPSS。
总之,Office实在是太强了,在电脑办公方面有绝对的垄断性,好好用它,就可以不理睬许多其它的电脑软件,大大提高我们的工作效率,降低自己的学习与时间成本。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13