“大数据+金融”:智能化发展将擦出怎样的火花
在填写一份普通的调查问卷时,你会在意开头的英文字母是否大写吗?在“大数据+金融”浪潮中,这样的一个小细节也可能成为判断一个人守信与否的依据。
当前,大数据浪潮席卷全球,借助大数据理念和科技技术,人们得以以新的视角审视社会经济生活各方面的海量数据,并用新的思路和方法对其进行整合、评价及利用。
“以数据为切入点,大数据给予了金融业新的发展契机与空间。”近日,在清华大学与金电联行(北京)信息技术有限公司联合成立的“清华大学—金电联行金融大数据联合研究中心——(以下简称“研究中心”)揭牌仪式上,中国中小企业协会副会长、金电联行董事长范晓忻表示。
未来,“大数据+金融”将擦出怎样的火花?金融业的智能化又将发展到何种程度?
实践:智能征信
“大数据和金融的结合,最终的结果是智能化。”范晓忻认为。
近期,国内多家商业银行陆续推出了自行研发的智能机器人,交行的“娇娇”、民生的“ONE”、广发的“发发”等在市场上吸引了诸多眼球。
“经济发展进入新常态,各个行业发生了深刻变革,从我们监测到的各方面数据看得非常清楚,有很多问题亟待解决。”清华大学副校长尤政表示。
完善的征信体系建设是金融业发展的根基,而征信也恰恰是最能显露大数据优势的领域。日前,国务院办公厅印发的《关于运用大数据加强对市场主体服务和监管的若干意见》中已明确指出,要以社会信用体系建设和政府信息公开数据开放为抓手,充分运用大数据、云计算等现代信息技术,提高政府服务水平,有序推进全社会信息资源开放共享,积极培育和发展社会化增信服务,提升数据资源对产业的支撑能力。
如何利用大数据完善征信体系?国内外均有所尝试。
在国内,利用大数据实现征信判断也已经在金融业有所实践。例如,金电联行公司此前与数十家金融机构合作推出了量化监管平台,通过对企业生产经营数据以及静态数据的定量分析,通过数百个指标项清晰了解贷款客户的风险状况,能够实现对未来3到6个月风险的发展趋势进行预警和预测。据某商业银行测算,大数据能有效降低不良率47%以上。
探索:智能风控+投顾+监管
除了征信领域外,“大数据+金融”的一个重要探索方向是智能金融风险管理。一个简单的例子是近年来频发的信用卡异地盗刷案。
“信用卡异地盗刷是极为明显的欺诈,如果智能化的辨别力足够强,通过对日常积累的大数据形成盗刷判断,就能够自动把明显的欺诈屏蔽,信用卡公司拒绝付款,对于金融机构而言也就实现了风险管控。”清华大学经济学研究所汤珂教授表示。
另一个重要的方向则是智能投资顾问。智能投资顾问事实上是金融科技的核心领域,某调查发现,在2008年国际金融危机的时候,美国的穷人资产损失了30%,而富人资产反而增加了2%。这背后的原因值得深思。
“富人有非常好的投资顾问,这些投资顾问能够给这些富人量身定制投资产品,而穷人没有。”汤珂强调,“因为美国的投资顾问费非常昂贵。”
专家认为,21世纪的信息技术对金融业最为核心的贡献,就是能够让中产阶级甚至是普通大众都能享受到智能投资顾问服务。
“智能投资顾问实际上主要是基于一种算法,通过对历史金融数据的基本评价,构建一个历史模型,然后根据历史规律,模拟将来。同时,还有最重要的一步,就是了解不同投资者的风险偏好程度。给定历史,给定将来,再给定不同投资者的不同风险偏好,有了这些智能投资顾问就能提供最优的投资建议。值得关注的是,如果把资金汇集到智能投资顾问平台,交易费用就降低很多。”汤珂表示。
落地:核心在于“算法”
随着传统金融业不断地将业务与服务延伸至互联网络,从有形的柜台业务到无形的云端服务,厚实的数据基础得到了极大程度的充盈。
业内人士认为,在大数据时代,大数据和金融的结合愈加紧密,如果在金融领域获取足够多的数据,就能够把大量的人工智能算法用在金融上,人工智能将成为大数据和金融结合的核心。
“大数据和金融的核心在于‘算法’,找到适合应用场景的人工智能算法,应该是大数据和金融的关键问题。”汤珂认为。
在“大数据+金融”蓝图下,国内的探索脚步正在加快。据悉,此次成立的金融大数据联合研究中心,就将致力于大数据应用理论研究、大数据挖掘及产业应用等关键技术的研发,根据不同行业特征,力争突破或改进原有的大数据挖掘技术、大数据组织及存储技术、行业信用评价指标项及大数据分析技术,为大数据技术开发、人才培养和产业发展提供指导,为大数据技术在银行征信、企业信用评价、政府社会治理、产业转型升级(爱基,净值,资讯)等多个领域应用落地提供支撑。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13