保险业应在大数据应用上寻求突破
以大数据和云计算为代表的新技术正在融入并深刻影响着人们的生产生活,而且已经成为当前引领金融业变革的关键因素。大数据的价值体现在应用,而目前全球不同行业对于大数据的应用并不均衡,且呈现出诸多特点。
一是知易行难,理念快于应用。大数据常识被广泛传播,数据价值深入人心,但如何具体操作实施,并未形成清晰可行的思路和模式。二是星星之火,还未形成燎原之势。当前,大数据应用的成功案例主要集中于互联网行业,金融、零售、电信、公共管理、医疗卫生等领域虽然也在积极尝试,但还没有明显成效。三是数据封闭,数据开放共享有待加强。大数据的理想目标是能够汇聚内外部数据形成综合分析的全局视野,但实际上,现有应用仍然以机构内部数据为主。由于法律和数据交易机制不健全,数据交易平台和数据源拥有者在对外开放和交易数据上仍持谨慎态度。四是创新不足,突破性创新应用尚不多见。大数据应用多集中于市场营销领域,如改善客户服务、流程优化、精准营销和削减成本等,而在新产品、新服务、新商业模式等方面的突破性创新应用不多。
从保险业与大数据的渊源来看,其发展史本就是一部数据应用沿革的历史。在大数据时代,保险业拥有的数据类型从结构化扩展到非结构化,从交易数据扩展到行为数据,从内部数据扩展到外部数据,从定量数据扩展到定性数据,每一步发展都使保险业的数据基础更加夯实。
从不同行业应用大数据的水平来看,保险业走在前列。不过,与金融同业相比,保险业应用大数据水平落后于银行、证券,后者的行业数据信息共享平台建设较早,为大数据应用奠定了基础,而保险业的行业共享平台刚起步;与国外保险机构相比,我国保险机构也稍显落后。
当前,国外保险业大数据应用具有以下特点:一是对大数据的价值创造潜力已有广泛共识,保险业对大数据应用重视程度日益加深。二是数据来源日趋多元化。除传统的业务数据、财务数据外,国外保险业正积极拓展数据来源,客服、语音、官方网站、社交媒体、地理信息、可穿戴设备以及部分行业外数据都将成为大数据背景下保险业新的数据来源。三是应用领域不断扩展。国际保险业普遍认为,大数据同保险业的结合是全方位、全流程的,要充分挖掘应用节点,更好地利用大数据技术创造价值。四是商业效果开始显现。国际保险业普遍认为大数据理念、技术和资源的有效运用,将为行业创造前所未有的商业价值。
反观我国保险业大数据应用情况,与国外相比确实存在一定差距。目前,我国保险业高度重视大数据研究应用,大部分保险机构都认为大数据将给传统金融保险业带来深刻变革,必将成为未来企业的核心竞争力。但在数据资源积累上则未显现出变革的力量。调查显示,我国保险业数据资源总量仍偏小,以结构化数据为主,非结构化数据利用率较低,数据规模、应用效率与互联网等大数据应用水平先进的行业相比还有很大差距。由于数据资源匮乏,导致我国保险业对大数据大规模商业应用尚未出现,大部分保险机构还处于学习理解阶段,仅有少数公司开始进行小规模的试验。而现有实践则主要集中在营销领域,通过对客户数据的全面搜集,多维度刻画客户特征,实现精准营销。另外,尽管保险公司承认大数据将为保险业带来深刻变革,但从实际结果来看,仅有20%左右的保险机构建立了专门的大数据研发团队,这其中,三分之二的团队人数在10人以下,且绝大部分成员来自公司信息技术部门,跨学科、跨领域的复合型大数据人才严重不足。
展望未来,保险业大数据应用最有可能在以下几个领域取得突破:一是扩大承保范围。受保险理论和承保技术局限,过去不可保的风险,在大数据时代可能成为可保风险。大数据理念和技术的深度应用,将有效激发潜在的、全新的保险需求,如已经开展的运费退货险、正在酝酿的网络空间保险、云保险等。二是实现个性定价。大数据的出现使个性化费率制定和最优产品定价有了可能。数据量越大、数据维度越广,定价的精确度就越高,保险公司面临的逆选择风险越低,费率的科学性、充足性和公平性也就越理想。三是优化核保理赔。通过运用大数据分析建模,可以有效实现自动化核保核赔。四是提升反欺诈绩效。根据大数据技术本身的特点和保险公司欺诈事件的特性,可以在核保及理赔环节应用大数据技术开展反欺诈检测。五是提高运营效率。大数据在财务管理、行政管理、人力资源管理等领域的深入应用,对于改善保险机构运营及管理水平也有积极作用。六是助力风险管控。保险业可以在声誉风险、信用风险、操作风险等领域有效运用大数据,不断提高企业风险管理能力和水平。对于保险监管而言,大数据应用能够揭示传统技术难以展现的关联关系,为有效处理复杂风险提供新手段,为保险监管的现代化转型带来新机遇。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13