R软件导入数据_r语言怎么导入数据_R软件导入数据
R软件导入数据
1.Rcmdr安装包导入数据:
1.安装Rcmdr包,输入:
install.packages(“Rcmdr”)
回车
接着就让其自动操作,选择一下镜像站就可以了。
2.接着运行,输入:
library(Rcmdr)
回车
就会出现附件的图形界面,在这个界面上可以实现几乎所有的统计分析方法。
以后运行,只要输入 library(Rcmdr) 即可。
————————————————————————————
2.鼠标导入:
另外数据导入还可以采用如下方式:read.table(choose.files())
——————————————————————————————
3.更改目录,语句导入:
手动方式定义自己的默认文档。导入数据。
1.右键R软件快捷方式=》属性=》起始位置=》输入目录名如:D:/data
2.打开R
3.输入 getwd() 回车怎么样,默认目录变成D:/data了吧。
4.输入read.table(“文件名.格式”)回车。导入成功。
以后只需把数据这个默认文件夹就可以了。
若想将数据转化为对数形式,输
入下面语句:
关键词:R软件 [] [,] 对数 log[,
da=read.table(“x.txt”,header=T)
注:da是这里取的名字。
读取数据时,txt文件第一行可以是数据标签。header=T则会从第二行开始取数据,否则从第一行开始取。
>daa=log(da[,1])
这里[,]是什么意思呢?维度的意思。
R软件初步:导入数据
因为我的txt数据只有一列所以我这里输入的是[,1]
好了这样就转化为对数形式了。
R如何导入数据
请问R软件如何导入数据,我在论坛中看到了相应的问答,但是没有得到答案,请大家帮忙,谢谢!说是要放在一个目录下,是什么意思,是将数据与R安装放在一个目录下吗?
文件不需要跟R安装文件放在同意文件夹下。 你只需要把R的working directory 改成数据所在文件夹就行了。
有几种不通的读入方法,根据你的数据类型, read, read.csv, read.table…..
若果数据是.csv,如下:
read.csv“<name_of_your_file>” 应该就可以了。
R的working directory 在哪里??
就是R软件→文件→改变工作目录→数据所在的目录,前面说的working directory就是工作目录
首先看你的数据文件是什么类型,假如是txt文档并且放在C盘目录文件下,程序就是 read.table(“C:/***.txt”)
如果是SPSS文件就是read.spss(“C:/***,sav”)
如何用R软件导入excel数据表中数据
请问如何在R中引用电子表格中的数据,我看了有关数据导入的文献,可是不太明白,期盼知道的同仁给予说明!
把EXCEL数据转换成单表格格式.csv,然后利用read.csv读入
我有一篇关于R数据导入导出的文章,可是写的不是很详细,
还想请教一下 如何对指定目录的数据导入
我用read.table(“file”…)格式导入 可是显示 文件不存在 但事先我已经将文件放在 文件bin 中了
excel表可以先转化成“文本文件(制表符分隔)”,
用函数read.delm()读该文本文件! 即>rd<-read.delim(“.txt”) |
如果你有什么细节的问题可以采用help命令,help(read.table)
可以下载这个包 xlsReadWrite
然后可以用read.xls
将excel表格转换成“文本文件(制表符分隔)”,
用read.table(“.txt 文件的绝对路径”,header=T)
或者转换成.csv也行,用法与read.table()一样
只需改成read.csv()即可
一定要用绝对路径,否则运行出错,最好放在R 文件区
试试 用 package “XLConnect”, 不过总会出现一些问题:比如script 无法保存,R界面无法正常工作
library(XLConnect)
wd<-choose.dir()
setwd(wd)
dir()
fnm<-dir()
fnm
wb1<-loadWorkbook(fnm[1])
gini.header<-readWorksheet(wb1,sheet=”gini”,startRow=1,endRow=1,rownames=F)
gini<-readWorksheet(wb1,sheet=”gini”,startRow=3,header=F)
library(RODBC)
随便起个名 = odbcConnectExcel(file.choose())
sqlTables(上面那个名)
随便起个名 = sqlFetch(上面那个名, “excel里的文件名”)
第一种方法:首先将当前工作目录更改所使用的文件下,利用change directory修改工作目录。
第二种方法:在read.table()中给出路径。路径中的“\”必须全部用”/”替换。
excel另存为.CSV
R命令:read.csv(file.choose()) 【如果第一行为标题行,命令为:read.csv(file.choose(),header=TRUE)】
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13