R软件导入数据_r语言怎么导入数据_R软件导入数据
R软件导入数据
1.Rcmdr安装包导入数据:
1.安装Rcmdr包,输入:
install.packages(“Rcmdr”)
回车
接着就让其自动操作,选择一下镜像站就可以了。
2.接着运行,输入:
library(Rcmdr)
回车
就会出现附件的图形界面,在这个界面上可以实现几乎所有的统计分析方法。
以后运行,只要输入 library(Rcmdr) 即可。
————————————————————————————
2.鼠标导入:
另外数据导入还可以采用如下方式:read.table(choose.files())
——————————————————————————————
3.更改目录,语句导入:
手动方式定义自己的默认文档。导入数据。
1.右键R软件快捷方式=》属性=》起始位置=》输入目录名如:D:/data
2.打开R
3.输入 getwd() 回车怎么样,默认目录变成D:/data了吧。
4.输入read.table(“文件名.格式”)回车。导入成功。
以后只需把数据这个默认文件夹就可以了。
若想将数据转化为对数形式,输
入下面语句:
关键词:R软件 [] [,] 对数 log[,
da=read.table(“x.txt”,header=T)
注:da是这里取的名字。
读取数据时,txt文件第一行可以是数据标签。header=T则会从第二行开始取数据,否则从第一行开始取。
>daa=log(da[,1])
这里[,]是什么意思呢?维度的意思。
R软件初步:导入数据
因为我的txt数据只有一列所以我这里输入的是[,1]
好了这样就转化为对数形式了。
R如何导入数据
请问R软件如何导入数据,我在论坛中看到了相应的问答,但是没有得到答案,请大家帮忙,谢谢!说是要放在一个目录下,是什么意思,是将数据与R安装放在一个目录下吗?
文件不需要跟R安装文件放在同意文件夹下。 你只需要把R的working directory 改成数据所在文件夹就行了。
有几种不通的读入方法,根据你的数据类型, read, read.csv, read.table…..
若果数据是.csv,如下:
read.csv“<name_of_your_file>” 应该就可以了。
R的working directory 在哪里??
就是R软件→文件→改变工作目录→数据所在的目录,前面说的working directory就是工作目录
首先看你的数据文件是什么类型,假如是txt文档并且放在C盘目录文件下,程序就是 read.table(“C:/***.txt”)
如果是SPSS文件就是read.spss(“C:/***,sav”)
如何用R软件导入excel数据表中数据
请问如何在R中引用电子表格中的数据,我看了有关数据导入的文献,可是不太明白,期盼知道的同仁给予说明!
把EXCEL数据转换成单表格格式.csv,然后利用read.csv读入
我有一篇关于R数据导入导出的文章,可是写的不是很详细,
还想请教一下 如何对指定目录的数据导入
我用read.table(“file”…)格式导入 可是显示 文件不存在 但事先我已经将文件放在 文件bin 中了
excel表可以先转化成“文本文件(制表符分隔)”,
用函数read.delm()读该文本文件! 即>rd<-read.delim(“.txt”) |
如果你有什么细节的问题可以采用help命令,help(read.table)
可以下载这个包 xlsReadWrite
然后可以用read.xls
将excel表格转换成“文本文件(制表符分隔)”,
用read.table(“.txt 文件的绝对路径”,header=T)
或者转换成.csv也行,用法与read.table()一样
只需改成read.csv()即可
一定要用绝对路径,否则运行出错,最好放在R 文件区
试试 用 package “XLConnect”, 不过总会出现一些问题:比如script 无法保存,R界面无法正常工作
library(XLConnect)
wd<-choose.dir()
setwd(wd)
dir()
fnm<-dir()
fnm
wb1<-loadWorkbook(fnm[1])
gini.header<-readWorksheet(wb1,sheet=”gini”,startRow=1,endRow=1,rownames=F)
gini<-readWorksheet(wb1,sheet=”gini”,startRow=3,header=F)
library(RODBC)
随便起个名 = odbcConnectExcel(file.choose())
sqlTables(上面那个名)
随便起个名 = sqlFetch(上面那个名, “excel里的文件名”)
第一种方法:首先将当前工作目录更改所使用的文件下,利用change directory修改工作目录。
第二种方法:在read.table()中给出路径。路径中的“\”必须全部用”/”替换。
excel另存为.CSV
R命令:read.csv(file.choose()) 【如果第一行为标题行,命令为:read.csv(file.choose(),header=TRUE)】
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29