数据的无量纲化处理和标准化处理的区别是什么
请教:两者除了方法上有所不同外,在其他方面还有什么区别?
解答:
标准化处理方法是无量纲化处理的一种方法。除此之外,还有相对化处理方法(包括初值比处理)、函数化(功效系数)方法,等等。由于标准化处理方法可以与分布函数结合,所以应用比较广泛。如果指标有正、逆之分,功效系数方法也不错。初值比处理方法主要应用在灰色系统关联分析方面。
标准化并不能解决正向化问题,如果要将数据正向化,需要其他无量钢化的方法,例如我要将数据全部变成0到100之间的数,那么可以用compute计算公式:
(x-min(x))/(max(x)-min(x))*100
数据的标准化处理
(1)数据的中心化处理
数据的中心化处理是指平移变换,即
该变换可以使样本的均值变为 0,而这样的变换既不改变样本点间的相互位置,也
不改变变量间的相关性。但变换后,却常常有许多技术上的便利。
(2)数据的无量纲化处理
在实际问题中,不同变量的测量单位往往是不一样的。为了消除变量的量纲效应,
使每个变量都具有同等的表现力,数据分析中常用的消量纲的方法,是对不同的变量进
行所谓的压缩处理,即使每个变量的方差均变成1,即
还可以有其它消量纲的方法,如
(3)标准化处理
所谓对数据的标准化处理,是指对数据同时进行中心化-压缩处理,即
用在哪方面 数理统计分析试验结果、鉴别各因素对结果影响程度的方法称为方差分析(Analysis Of Variance),记作ANOVA。
我们已经作过两个总体均值的假设检验,如两台机床生产的零件尺寸是否相等,病
人和正常人的某个生理指标是否一样。如果把这类问题推广一下,要检验两个以上总体
的均值彼此是否相等,仍然用以前介绍的方法是很难做到的。(均值法)
从用几种不同工艺制成的灯泡中,各抽取了若干个测量其寿命,要推断这几种工艺制成的灯泡寿命是否有显著差异;用几种化肥和几个小麦品种在若干块试验田里种植小麦,要推断不同的化肥和品种对产量有无显著影响。(方差分析)。
模型
方差分析一般用的显著性水平是:取α = 0.01,拒绝0 H ,称因素A 的影响各水平的差异显著,取α = 0.01,不拒绝0 H ,但取α = 0.05,拒绝0 H ,称因
素A的影响显著;取α = 0.05,不拒绝0 H ,称因素A 无显著影响。
例子 例1 为考察5 名工人的劳动生产率是否相同,记录了每人4 天的产量,并算出其平均值,如表3。你能从这些数据推断出他们的生产率有无显著差别吗?
工人
天 1 A 2 A 3 A 4 A 5 A
1 256 254 250 248 236
2 242 330 277 280 252
3 280 290 230 305 220
4 298 295 302 289 252
平均产量269 292.25 264.75 280.5 240
解 编写程序如下:
x=[256 254 250 248 236
242 330 277 280 252
280 290 230 305 220
298 295 302 289 252];
p=anova1(x)
求得p = 0.1109 >α = 0.05,故接受0 H ,即5 名工人的生产率没有显著差异。
曲线拟合(判断,估计,两者的关系)
线性最小二乘法 已知一组(二维)数据,即平面上的n个点(xi , yi) ,
i = 1,2,L,n,… i x 互不相同,寻求一个函数(曲线) y = f (x),使f (x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。
模型
例5 某乡镇企业1990-1996 年的生产利润如表5。
表5
年份 1990 1991 1992 1993 1994 1995 1996
利润(万元) 70 122 144 152 174 196 202
试预测1997 年和1998 年的利润。
解 作已知数据的的散点图,
x0=[1990 1991 1992 1993 1994 1995 1996];
y0=[70 122 144 152 174 196 202];
plot(x0,yo,’*’)
发现该乡镇企业的年生产利润几乎直线上升。因此,我们可以用1 0 y = a x + a 作为
拟合函数来预测该乡镇企业未来的年利润。编写程序如下:
x0=[1990 1991 1992 1993 1994 1995 1996];
y0=[70 122 144 152 174 196 202];
a=polyfit(x0,y0,1)
y97=polyval(a,1997)
y98=polyval(a,1998)
求得20 1 a = , 4
0 a = −4.0705×10 ,1997 年的生产利润y97=233.4286,1998 年的生产利润为y98=253.9286 最小二乘优化(mtalab cftool)
回归分析
用途 简单地说,回归分析就是对拟合问题作的统计分析。
前面我们讲过曲线拟合问题。曲线拟合问题的特点是,根据得到的若干有关变量的
一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数
据拟合得最好。通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要
作的工作是由数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31