前几天拿到了数据挖掘基础教程一书,感觉部分算法是基于统计学的原理的,而统计学是可以通过Oracle来实现。
其次是为了观看德国vs西班牙的世界杯比赛,来了一点小小的兴致,动手写点小脚本。不过本文只是为了实现而实现的,没有做任何优化,有兴趣的话,大家可以玩一玩。
http://baike.baidu.com/view/1076817.htm?fr=ala0_1
关联规则是形如X→Y的蕴涵式,
其中且, X和Y分别称为关联规则的先导(antecedent或left-hand-side, LHS)和后继(consequent或 right-hand-side, RHS) 。
关联规则在D中的支持度(support)是D中事务同时包含X、Y的百分比,即概率; =X^Y/D
置信度(confidence)是包含X的事务中同时又包含Y的百分比,即条件概率。 =(X^Y)/X
关联规则是有趣的,如果满足最小支持度阈值和最小置信度阈值。
若给定最小支持度α = n,最小置信度β = m,则分别通过以上的X^Y/D和(X^Y)/X,可获知是否存在关联
使用的原始数据
反范式后的数据
待统计项
--创建各个购买单元项视图
create view distinct_trans as select distinct tranobject from purchase;
--创建各个事务内部的购买单元项
create view all_trans as
--可以用wm_concat函数
SELECT tranid,MAX(tranobjects) tranobjects
FROM (select tranid,WMSYS.WM_CONCAT(tranobject) OVER(PARTITION BY tranid ORDER BY tranobject) tranobjects
from purchase
)
group by tranid;
--也可以用sys_connect_by_path函数
create view all_trans as
select tranid,substr(tranobjects,2) tranobjects from --格式化前面的逗号和空格
(
select distinct tranid,FIRST_VALUE(tranobjects) OVER(PARTITION BY tranid ORDER BY levels desc ) AS tranobjects --保留最大的那个
from
(
select tranid,sys_connect_by_path(tranobject,',') tranobjects,level levels --各购买事务的内部排列组合
from purchase
connect by tranid=prior tranid and tranobject
)
);
--对所有购买单元项进行排列组合,即数据挖掘的X^Y项
create view all_zuhe as
select substr(sys_connect_by_path(tranobject,','),2) zuhe
from (select distinct tranobject from purchase)
connect by nocycle tranobject
select * from all_zuhe
create view full_zuhe as
select a.zuhe X,b.zuhe Y from all_zuhe a,all_zuhe b
where instr(a.zuhe,b.zuhe)=0 and instr(b.zuhe,a.zuhe)=0
and not exists(select 1 from distinct_trans c
where instr(a.zuhe,c.tranobject)>0 and instr(b.zuhe,c.tranobject)>0)
select * from full_zuhe
create or replace view tongji as
select xy,xy_total,x,x_total,y,y_total,transtotal from
(
select y||','||x xy,
(select count(*) from all_trans a where instr(a.tranobjects,c.x||','||c.y)>0 or instr(a.tranobjects,c.y||','||c.x)>0) xy_total, --包含xy的事务数
y,
(select count(*) from all_trans b where instr(b.tranobjects,c.y)>0) y_total, --包含y的事务数
x,
(select count(*) from all_trans b where instr(b.tranobjects,c.x)>0) x_total, --包含x的事务数
d.transtotal --总事务数
from full_zuhe c,(select count(distinct tranid) transtotal from purchase) d
order by xy_total desc,x_total desc
)
select * from tongji where xy_total>=3 and y_total>=3
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21