
前几天拿到了数据挖掘基础教程一书,感觉部分算法是基于统计学的原理的,而统计学是可以通过Oracle来实现。
其次是为了观看德国vs西班牙的世界杯比赛,来了一点小小的兴致,动手写点小脚本。不过本文只是为了实现而实现的,没有做任何优化,有兴趣的话,大家可以玩一玩。
http://baike.baidu.com/view/1076817.htm?fr=ala0_1
关联规则是形如X→Y的蕴涵式,
其中且, X和Y分别称为关联规则的先导(antecedent或left-hand-side, LHS)和后继(consequent或 right-hand-side, RHS) 。
关联规则在D中的支持度(support)是D中事务同时包含X、Y的百分比,即概率; =X^Y/D
置信度(confidence)是包含X的事务中同时又包含Y的百分比,即条件概率。 =(X^Y)/X
关联规则是有趣的,如果满足最小支持度阈值和最小置信度阈值。
若给定最小支持度α = n,最小置信度β = m,则分别通过以上的X^Y/D和(X^Y)/X,可获知是否存在关联
使用的原始数据
反范式后的数据
待统计项
--创建各个购买单元项视图
create view distinct_trans as select distinct tranobject from purchase;
--创建各个事务内部的购买单元项
create view all_trans as
--可以用wm_concat函数
SELECT tranid,MAX(tranobjects) tranobjects
FROM (select tranid,WMSYS.WM_CONCAT(tranobject) OVER(PARTITION BY tranid ORDER BY tranobject) tranobjects
from purchase
)
group by tranid;
--也可以用sys_connect_by_path函数
create view all_trans as
select tranid,substr(tranobjects,2) tranobjects from --格式化前面的逗号和空格
(
select distinct tranid,FIRST_VALUE(tranobjects) OVER(PARTITION BY tranid ORDER BY levels desc ) AS tranobjects --保留最大的那个
from
(
select tranid,sys_connect_by_path(tranobject,',') tranobjects,level levels --各购买事务的内部排列组合
from purchase
connect by tranid=prior tranid and tranobject
)
);
--对所有购买单元项进行排列组合,即数据挖掘的X^Y项
create view all_zuhe as
select substr(sys_connect_by_path(tranobject,','),2) zuhe
from (select distinct tranobject from purchase)
connect by nocycle tranobject
select * from all_zuhe
create view full_zuhe as
select a.zuhe X,b.zuhe Y from all_zuhe a,all_zuhe b
where instr(a.zuhe,b.zuhe)=0 and instr(b.zuhe,a.zuhe)=0
and not exists(select 1 from distinct_trans c
where instr(a.zuhe,c.tranobject)>0 and instr(b.zuhe,c.tranobject)>0)
select * from full_zuhe
create or replace view tongji as
select xy,xy_total,x,x_total,y,y_total,transtotal from
(
select y||','||x xy,
(select count(*) from all_trans a where instr(a.tranobjects,c.x||','||c.y)>0 or instr(a.tranobjects,c.y||','||c.x)>0) xy_total, --包含xy的事务数
y,
(select count(*) from all_trans b where instr(b.tranobjects,c.y)>0) y_total, --包含y的事务数
x,
(select count(*) from all_trans b where instr(b.tranobjects,c.x)>0) x_total, --包含x的事务数
d.transtotal --总事务数
from full_zuhe c,(select count(distinct tranid) transtotal from purchase) d
order by xy_total desc,x_total desc
)
select * from tongji where xy_total>=3 and y_total>=3
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20