数据分析实战:如果我为共享单车类产品做数据分析
很多人都在问:如何提高数据分析能力?笔者(申悦)认为一方面要掌握基本的分析框架和分析思路,另一方面就要不断实践。一种很好的实践方式就是:分析行业内典型产品的设计、运营思路,假设自己就是该公司的数据产品经理,你会如何对其进行分析。
前一阵在“在行”上就遇到一个案例,学员想了解共享单车类产品的数据分析思路,本文就针对这个案例整理一二,供读者参考。如果读者中有摩拜或ofo的同学,麻烦帮我参谋下思路是否靠谱哈^_^。
步骤一:明确用户是谁
以摩拜为例,其产品可能的目标用户有2类:用车方、维护方。用车方就是车辆使用者,维护方则是车辆提供者。用车方的诉求是随时随地有车骑,且付费后骑行体验要良好。维护方的诉求则是以最少的车辆服务最多的用车方,并从用车中得到收益。
步骤二:明确用户使用场景
从维护方角度看,其简单场景如下图:
从用车方角度看,其场景如下图:
明确使用场景、使用流程的原因在于:第一,我们的数据都来源于这些场景中;第二,我们需要通过分析这些数据,让用户每一步过程都顺利进行,避免流失;第三,还要让企业利益最大化,从而进一步让利用户。
步骤三:明确分析目标
经过人群定义和流程梳理,针对共享单车,我们可简单将分析目标定义为:
提高成功骑行次数——用户利益最大化
提高毛收入——企业利益最大化
步骤四:拆解目标
数据分析的思路就是将目标层层拆解,从每个子指标中发现问题。基于以上目标,可拆解为:
成功骑行次数 = app启动次数 x 每启动扫码开锁率 x 成功开锁率 x 成功结束率
成功骑行次数 = 每人每日行程次数 x 人数
毛收入 = 充值收入 – 投入成本 = ((每充值金额 – 欠费金额) x 充值次数) – ((每车成本 + 维护费用) x 车辆数量 )
注:以上拆解因人而异,因经验而异,从不同角度可得出不同公式,具体要根据实际运营目标进行调整。
步骤五:明确数据观察者角色
拆解出的子指标,需要呈献给不同角色的人群查看,以此来进行不同维度的分析,因此在分析前也要明确这些角色,例如:
决策层:关注核心指标、交易指标、时段趋势
维护组:关注车辆状态、位置、轨迹、故障率、用户反馈
运营组:关注骑行次数、充值情况、押金情况、欠费情况、信用积分
产品组:关注骑行流程、交互路径、用户反馈
开发组:关注请求失败率、App崩溃数
步骤六:明确数据度量
依据不同角色,可将拆解出的子指标进一步汇总整合,组成不同的统计度量值。这一过程中有一点要注意:每产出一份度量值,都要给出目的。也就是说看这个度量值能得出什么结论。没有结论的数值是没有意义的。如下所示:
核心数据
评估推广效果——注册用户数
评估活跃程度——启动次数、活跃用户数
评估业务健康程度——成功骑行次数、每启动骑行率(用车密度)
评估现金流健康程度——总入账、总出账、充值金额、欠费金额、车辆总成本
评估车辆健康程度——车辆总数量、故障车数量
运营数据
评估推广效果——注册用户数、下载点击数
评估活动运营效果——充值用户数、邀请注册用户数、成功骑行次数、积分增长/消耗量
评估用户质量——行程次数排行、骑行距离排行、信用积分排行、充值排行、欠费人数、认证人数
维护数据
车辆使用总览——车辆总数+车辆位置实时呈现——未使用/使用中/故障中/预约中
评估车辆使用率——使用车辆数/总车辆数
评估车辆故障率——故障车辆数/总车辆数
评估车辆闲置率——连续N日未使用车辆数/总车辆数,以及闲置车辆位置
产品数据
评估需求满足程度/车辆调度效果——每启动骑行率
评估产品使用情况——成功骑行次数、异常骑行次数、平均骑行里程、平均骑行时长、日骑行频率、启动次数、平均骑行天数、预约操作成功率
评估产品操作效果——充值路径、注册路径
评估产品使用异常情况——平均每次开锁成功率
评估用户骑行习惯——骑行轨迹聚合,为调度路线做参考
评估用户满意度——用户反馈好评数/用户反馈数
财务数据
用户金额:充值流水、充值次数、充值金额、充押金金额、余额不足金额、押金退款金额
维修金额:车辆生产成本、车辆维修成本
注:以上数据仅为举例,要根据实际需求调整。
步骤七:明确数据维度
有了度量值,就要思考可以通过哪些维度查看这些值,也就是要定义数据维度。常见的维度包括:
按时间:小时、日、周、月、季度、年度……
按地区:按省、按市、按区……
按渠道:邀请注册、扫码注册、广告点击注册……
按类型:已认证/未认证、已充值/未充值……
按位置:GPS地图定位
以上维度也要再根据需求不断调整、扩展、优化。
总结:
以上七步进行完毕,一个基本的共享单车数据分析框架就搭建完毕了。作为数据产品经理,一方面可基于此设计统计系统功能;另一方面可依此对不同人群定期产出数据分析报告了。但以上步骤只是完成了冰山一角,如何在观察数据后,对数据的变化合理归因,并对产品、运营策略的优化提出改进意见,才是真正需要深入研究的!
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16