数据分析实战:如果我为共享单车类产品做数据分析
很多人都在问:如何提高数据分析能力?笔者(申悦)认为一方面要掌握基本的分析框架和分析思路,另一方面就要不断实践。一种很好的实践方式就是:分析行业内典型产品的设计、运营思路,假设自己就是该公司的数据产品经理,你会如何对其进行分析。
前一阵在“在行”上就遇到一个案例,学员想了解共享单车类产品的数据分析思路,本文就针对这个案例整理一二,供读者参考。如果读者中有摩拜或ofo的同学,麻烦帮我参谋下思路是否靠谱哈^_^。
步骤一:明确用户是谁
以摩拜为例,其产品可能的目标用户有2类:用车方、维护方。用车方就是车辆使用者,维护方则是车辆提供者。用车方的诉求是随时随地有车骑,且付费后骑行体验要良好。维护方的诉求则是以最少的车辆服务最多的用车方,并从用车中得到收益。
步骤二:明确用户使用场景
从维护方角度看,其简单场景如下图:
从用车方角度看,其场景如下图:
明确使用场景、使用流程的原因在于:第一,我们的数据都来源于这些场景中;第二,我们需要通过分析这些数据,让用户每一步过程都顺利进行,避免流失;第三,还要让企业利益最大化,从而进一步让利用户。
步骤三:明确分析目标
经过人群定义和流程梳理,针对共享单车,我们可简单将分析目标定义为:
提高成功骑行次数——用户利益最大化
提高毛收入——企业利益最大化
步骤四:拆解目标
数据分析的思路就是将目标层层拆解,从每个子指标中发现问题。基于以上目标,可拆解为:
成功骑行次数 = app启动次数 x 每启动扫码开锁率 x 成功开锁率 x 成功结束率
成功骑行次数 = 每人每日行程次数 x 人数
毛收入 = 充值收入 – 投入成本 = ((每充值金额 – 欠费金额) x 充值次数) – ((每车成本 + 维护费用) x 车辆数量 )
注:以上拆解因人而异,因经验而异,从不同角度可得出不同公式,具体要根据实际运营目标进行调整。
步骤五:明确数据观察者角色
拆解出的子指标,需要呈献给不同角色的人群查看,以此来进行不同维度的分析,因此在分析前也要明确这些角色,例如:
决策层:关注核心指标、交易指标、时段趋势
维护组:关注车辆状态、位置、轨迹、故障率、用户反馈
运营组:关注骑行次数、充值情况、押金情况、欠费情况、信用积分
产品组:关注骑行流程、交互路径、用户反馈
开发组:关注请求失败率、App崩溃数
步骤六:明确数据度量
依据不同角色,可将拆解出的子指标进一步汇总整合,组成不同的统计度量值。这一过程中有一点要注意:每产出一份度量值,都要给出目的。也就是说看这个度量值能得出什么结论。没有结论的数值是没有意义的。如下所示:
核心数据
评估推广效果——注册用户数
评估活跃程度——启动次数、活跃用户数
评估业务健康程度——成功骑行次数、每启动骑行率(用车密度)
评估现金流健康程度——总入账、总出账、充值金额、欠费金额、车辆总成本
评估车辆健康程度——车辆总数量、故障车数量
运营数据
评估推广效果——注册用户数、下载点击数
评估活动运营效果——充值用户数、邀请注册用户数、成功骑行次数、积分增长/消耗量
评估用户质量——行程次数排行、骑行距离排行、信用积分排行、充值排行、欠费人数、认证人数
维护数据
车辆使用总览——车辆总数+车辆位置实时呈现——未使用/使用中/故障中/预约中
评估车辆使用率——使用车辆数/总车辆数
评估车辆故障率——故障车辆数/总车辆数
评估车辆闲置率——连续N日未使用车辆数/总车辆数,以及闲置车辆位置
产品数据
评估需求满足程度/车辆调度效果——每启动骑行率
评估产品使用情况——成功骑行次数、异常骑行次数、平均骑行里程、平均骑行时长、日骑行频率、启动次数、平均骑行天数、预约操作成功率
评估产品操作效果——充值路径、注册路径
评估产品使用异常情况——平均每次开锁成功率
评估用户骑行习惯——骑行轨迹聚合,为调度路线做参考
评估用户满意度——用户反馈好评数/用户反馈数
财务数据
用户金额:充值流水、充值次数、充值金额、充押金金额、余额不足金额、押金退款金额
维修金额:车辆生产成本、车辆维修成本
注:以上数据仅为举例,要根据实际需求调整。
步骤七:明确数据维度
有了度量值,就要思考可以通过哪些维度查看这些值,也就是要定义数据维度。常见的维度包括:
按时间:小时、日、周、月、季度、年度……
按地区:按省、按市、按区……
按渠道:邀请注册、扫码注册、广告点击注册……
按类型:已认证/未认证、已充值/未充值……
按位置:GPS地图定位
以上维度也要再根据需求不断调整、扩展、优化。
总结:
以上七步进行完毕,一个基本的共享单车数据分析框架就搭建完毕了。作为数据产品经理,一方面可基于此设计统计系统功能;另一方面可依此对不同人群定期产出数据分析报告了。但以上步骤只是完成了冰山一角,如何在观察数据后,对数据的变化合理归因,并对产品、运营策略的优化提出改进意见,才是真正需要深入研究的!
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20