热线电话:13121318867

登录
首页精彩阅读揭秘丨备战CDA数据分析竞赛!
揭秘丨备战CDA数据分析竞赛!
2017-01-16
收藏

 Kaggle是一个数据分析建模的应用竞赛平台,有点类似KDD-CUP(国际知识发现和数据挖掘竞赛),企业或者研究者可以将问题背景、数据、期望指标等发布到Kaggle上,以竞赛的形式向广大的数据科学家征集解决方案。而热爱数(dong)据(shou)挖(zhe)掘(teng)的小伙伴们可以下载/分析数据,使用统计/机器学习/数据挖掘等知识,建立算法模型,得出结果并提交,排名top的可能会有奖金!


01 关于泰坦尼克号之灾

· 带大家去该问题页面溜达一圈吧

· 下面是问题背景页 


· 泰坦尼克号问题之背景

· 就是那个大家都熟悉的『Jack and Rose』的故事,豪华游艇倒了,大家都惊恐逃生,可是救生艇的数量有限,无法人人都有,副船长发话了『lady and kid first!』,所以是否获救其实并非随机,而是基于一些背景有rank先后的。

· 训练和测试数据是一些乘客的个人信息以及存活状况,要尝试根据它生成合适的模型并预测其他人的存活状况。

· 对,这是一个二分类问题,是我们之前讨论的logistic regression所能处理的范畴。

02 说明

接触过Kaggle的同学们可能知道这个问题,也可能知道RandomForest和SVM等等算法,甚至还对多个模型做过融合,取得过非常好的结果,那maybe这篇文章并不是针对你的,你可以自行略过。

我们因为之前只介绍了Logistic Regression这一种分类算法。所以本次的问题解决过程和优化思路,都集中在这种算法上。

03 初探数据

先看看我们的数据,长什么样吧。在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据。

import pandas as pd #数据分析

import numpy as np #科学计算

from pandas import Series,DataFrame

data_train = pd.read_csv("/Users/Hanxiaoyang/Titanic_data/Train.csv")
data_train

pandas是常用的python数据处理包,把csv文件读入成dataframe各式,我们在ipython notebook中,看到data_train如下所示:


这就是典型的dataframe格式,如果你没接触过这种格式,完全没有关系,你就把它想象成Excel里面的列好了。 

我们看到,总共有12列,其中Survived字段表示的是该乘客是否获救,其余都是乘客的个人信息,包括:

· PassengerId => 乘客ID
· Pclass => 乘客等级(1/2/3等舱位)
· Name => 乘客姓名
· Sex => 性别
· Age => 年龄
· SibSp => 堂兄弟/妹个数
· Parch => 父母与小孩个数
· Ticket => 船票信息
· Fare => 票价
· Cabin => 客舱
· Embarked => 登船港口

逐条往下看,要看完这么多条,眼睛都有一种要瞎的赶脚。好吧,我们让dataframe自己告诉我们一些信息,如下所示:

data_train.info()

看到了如下的信息: 


上面的数据说啥了?它告诉我们,训练数据中总共有891名乘客,但是很不幸,我们有些属性的数据不全,比如说:

· Age(年龄)属性只有714名乘客有记录
· Cabin(客舱)更是只有204名乘客是已知的
似乎信息略少啊,想再瞄一眼具体数据数值情况呢?恩,我们用下列的方法,得到数值型数据的一些分布(因为有些属性,比如姓名,是文本型;而另外一些属性,比如登船港口,是类目型。这些我们用下面的函数是看不到的):


我们从上面看到更进一步的什么信息呢? 

mean字段告诉我们,大概0.383838的人最后获救了,2/3等舱的人数比1等舱要多,平均乘客年龄大概是29.7岁(计算这个时候会略掉无记录的)等等…

04 数据初步分析

每个乘客都这么多属性,那我们咋知道哪些属性更有用,而又应该怎么用它们啊?仅仅最上面的对数据了解,依旧无法给我们提供想法和思路。我们再深入一点来看看我们的数据,看看每个/多个 属性和最后的Survived之间有着什么样的关系呢。

4.1 乘客各属性分布

脑容量太有限了…数值看花眼了。我们还是统计统计,画些图来看看属性和结果之间的关系好了,代码如下:

import matplotlib.pyplot as plt
fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数plt.subplot2grid((2,3),(0,0))             # 在一张大图里分列几个小图data_train.Survived.value_counts().plot(kind='bar')# 柱状图 plt.title(u"获救情况 (1为获救)") # 标题plt.ylabel(u"人数")  

plt.subplot2grid((2,3),(0,1))
data_train.Pclass.value_counts().plot(kind="bar")
plt.ylabel(u"人数")
plt.title(u"乘客等级分布")

plt.subplot2grid((2,3),(0,2))
plt.scatter(data_train.Survived, data_train.Age)
plt.ylabel(u"年龄")                         # 设定纵坐标名称plt.grid(b=True, which='major', axis='y') 
plt.title(u"按年龄看获救分布 (1为获救)")


plt.subplot2grid((2,3),(1,0), colspan=2)
data_train.Age[data_train.Pclass == 1].plot(kind='kde')   
data_train.Age[data_train.Pclass == 2].plot(kind='kde')
data_train.Age[data_train.Pclass == 3].plot(kind='kde')
plt.xlabel(u"年龄")# plots an axis lableplt.ylabel(u"密度") 
plt.title(u"各等级的乘客年龄分布")
plt.legend((u'头等舱', u'2等舱',u'3等舱'),loc='best') # sets our legend for our graph.plt.subplot2grid((2,3),(1,2))
data_train.Embarked.value_counts().plot(kind='bar')
plt.title(u"各登船口岸上船人数")
plt.ylabel(u"人数")  
plt.show()



bingo,图还是比数字好看多了。所以我们在图上可以看出来,被救的人300多点,不到半数;3等舱乘客灰常多;遇难和获救的人年龄似乎跨度都很广;3个不同的舱年龄总体趋势似乎也一致,2/3等舱乘客20岁多点的人最多,1等舱40岁左右的最多(→_→似乎符合财富和年龄的分配哈,咳咳,别理我,我瞎扯的);登船港口人数按照S、C、Q递减,而且S远多于另外俩港口。

这个时候我们可能会有一些想法了:

· 不同舱位/乘客等级可能和财富/地位有关系,最后获救概率可能会不一样

· 年龄对获救概率也一定是有影响的,毕竟前面说了,副船长还说『小孩和女士先走』呢

· 和登船港口是不是有关系呢?也许登船港口不同,人的出身地位不同?


口说无凭,空想无益。老老实实再来统计统计,看看这些属性值的统计分布吧。

4.2 属性与获救结果的关联统计

#看看各乘客等级的获救情况fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数Survived_0 = data_train.Pclass[data_train.Survived == 0].value_counts()
Survived_1 = data_train.Pclass[data_train.Survived == 1].value_counts()
df=pd.DataFrame({u'获救':Survived_1, u'未获救':Survived_0})
df.plot(kind='bar', stacked=True)
plt.title(u"各乘客等级的获救情况")
plt.xlabel(u"乘客等级") 
plt.ylabel(u"人数") 
plt.show()



啧啧,果然,钱和地位对舱位有影响,进而对获救的可能性也有影响啊←_← 

咳咳,跑题了,我想说的是,明显等级为1的乘客,获救的概率高很多。恩,这个一定是影响最后获救结果的一个特征

#看看各性别的获救情况fig = plt.figure()
fig.set(alpha=0.2)  # 设定图表颜色alpha参数Survived_m = data_train.Survived[data_train.Sex == 'male'].value_counts()
Survived_f = data_train.Survived[data_train.Sex == 'female'].value_counts()
df=pd.DataFrame({u'男性':Survived_m, u'女性':Survived_f})
df.plot(kind='bar', stacked=True)
plt.title(u"按性别看获救情况")
plt.xlabel(u"性别") 
plt.ylabel(u"人数")
plt.show()


歪果盆友果然很尊重lady,lady first践行得不错。性别无疑也要作为重要特征加入最后的模型之中。


恩,坚定了之前的判断。

我们看看各登船港口的获救情况。


下面我们来看看 堂兄弟/妹,孩子/父母有几人,对是否获救的影响。


好吧,没看出特别特别明显的规律(为自己的智商感到捉急…),先作为备选特征,放一放。
部分结果如下: 

这三三两两的…如此不集中…我们猜一下,也许,前面的ABCDE是指的甲板位置、然后编号是房间号?…好吧,我瞎说的,别当真…

关键是Cabin这鬼属性,应该算作类目型的,本来缺失值就多,还如此不集中,注定是个棘手货…第一感觉,这玩意儿如果直接按照类目特征处理的话,太散了,估计每个因子化后的特征都拿不到什么权重。加上有那么多缺失值,要不我们先把Cabin缺失与否作为条件(虽然这部分信息缺失可能并非未登记,maybe只是丢失了而已,所以这样做未必妥当),先在有无Cabin信息这个粗粒度上看看Survived的情况好了。


咳咳,有Cabin记录的似乎获救概率稍高一些,先这么着放一放吧。

05 简单数据预处理

大体数据的情况看了一遍,对感兴趣的属性也有个大概的了解了。 

下一步干啥?咱们该处理处理这些数据,为机器学习建模做点准备了。

对了,我这里说的数据预处理,其实就包括了很多Kaggler津津乐道的feature engineering过程,灰常灰常有必要!

先从最突出的数据属性开始吧,对,Cabin和Age,有丢失数据实在是对下一步工作影响太大。

先说Cabin,暂时我们就按照刚才说的,按Cabin有无数据,将这个属性处理成Yes和No两种类型吧。

再说Age:

通常遇到缺值的情况,我们会有几种常见的处理方式

· 如果缺值的样本占总数比例极高,我们可能就直接舍弃了,作为特征加入的话,可能反倒带入noise,影响最后的结果了
· 如果缺值的样本适中,而该属性非连续值特征属性(比如说类目属性),那就把NaN作为一个新类别,加到类别特征
· 如果缺值的样本适中,而该属性为连续值特征属性,有时候我们会考虑给定一个step(比如这里的age,我们可以考虑每隔2/3岁为一个步长),然后把它离散化,之后把NaN作为一个type加到属性类目中。
· 有些情况下,缺失的值个数并不是特别多,那我们也可以试着根据已有的值,拟合一下数据,补充上。

本例中,后两种处理方式应该都是可行的,我们先试试拟合补全吧(虽然说没有特别多的背景可供我们拟合,这不一定是一个多么好的选择)

我们这里用scikit-learn中的RandomForest来拟合一下缺失的年龄数据(注:RandomForest是一个用在原始数据中做不同采样,建立多颗DecisionTree,再进行average等等来降低过拟合现象,提高结果的机器学习算法,我们之后会介绍到)


恩。目的达到,OK了。

因为逻辑回归建模时,需要输入的特征都是数值型特征,我们通常会先对类目型的特征因子化。 

什么叫做因子化呢?举个例子:

以Cabin为例,原本一个属性维度,因为其取值可以是[‘yes’,’no’],而将其平展开为’Cabin_yes’,’Cabin_no’两个属性

原本Cabin取值为yes的,在此处的”Cabin_yes”下取值为1,在”Cabin_no”下取值为0
原本Cabin取值为no的,在此处的”Cabin_yes”下取值为0,在”Cabin_no”下取值为1
我们使用pandas的”get_dummies”来完成这个工作,并拼接在原来的”data_train”之上,如下所示。



bingo,我们很成功地把这些类目属性全都转成0,1的数值属性了。

这样,看起来,是不是我们需要的属性值都有了,且它们都是数值型属性呢。

有一种临近结果的宠宠欲动感吧,莫急莫急,我们还得做一些处理,仔细看看Age和Fare两个属性,乘客的数值幅度变化,也忒大了吧!!如果大家了解逻辑回归与梯度下降的话,会知道,各属性值之间scale差距太大,将对收敛速度造成几万点伤害值!甚至不收敛! (╬▔皿▔)…所以我们先用scikit-learn里面的preprocessing模块对这俩货做一个scaling,所谓scaling,其实就是将一些变化幅度较大的特征化到[-1,1]之内。


恩,好看多了,万事俱备,只欠建模。马上就要看到成效了,哈哈。我们把需要的属性值抽出来,转成scikit-learn里面LogisticRegression可以处理的格式。

06 逻辑回归建模

我们把需要的feature字段取出来,转成numpy格式,使用scikit-learn中的LogisticRegression建模。

good,很顺利,我们得到了一个model,如下: 


先淡定!淡定!你以为把test.csv直接丢进model里就能拿到结果啊…骚年,图样图森破啊!我们的”test_data”也要做和”train_data”一样的预处理啊!!


不错不错,数据很OK,差最后一步了。 

下面就做预测取结果吧!!


啧啧,挺好,格式正确,去make a submission啦啦啦!

在Kaggle的Make a submission页面,提交上结果。如下: 



0.76555,恩,结果还不错。毕竟,这只是我们简单分析处理过后出的一个baseline模型嘛。

07 逻辑回归系统优化

7.1 模型系数关联分析

亲,你以为结果提交上了,就完事了? 

我不会告诉你,这只是万里长征第一步啊(泪牛满面)!!!这才刚撸完baseline model啊!!!还得优化啊!!!

看过Andrew Ng老师的machine Learning课程的同学们,知道,我们应该分析分析模型现在的状态了,是过/欠拟合?,以确定我们需要更多的特征还是更多数据,或者其他操作。我们有一条很著名的learning curves对吧。

不过在现在的场景下,先不着急做这个事情,我们这个baseline系统还有些粗糙,先再挖掘挖掘。

首先,Name和Ticket两个属性被我们完整舍弃了(好吧,其实是因为这俩属性,几乎每一条记录都是一个完全不同的值,我们并没有找到很直接的处理方式)。

然后,我们想想,年龄的拟合本身也未必是一件非常靠谱的事情,我们依据其余属性,其实并不能很好地拟合预测出未知的年龄。再一个,以我们的日常经验,小盆友和老人可能得到的照顾会多一些,这样看的话,年龄作为一个连续值,给一个固定的系数,应该和年龄是一个正相关或者负相关,似乎体现不出两头受照顾的实际情况,所以,说不定我们把年龄离散化,按区段分作类别属性会更合适一些。

上面只是我瞎想的,who knows是不是这么回事呢,老老实实先把得到的model系数和feature关联起来看看。

pd.DataFrame({"columns":list(train_df.columns)[1:], "coef":list(clf.coef_.T)})
1

首先,大家回去前两篇文章里瞄一眼公式就知道,这些系数为正的特征,和最后结果是一个正相关,反之为负相关。

我们先看看那些权重绝对值非常大的feature,在我们的模型上:

· Sex属性,如果是female会极大提高最后获救的概率,而male会很大程度拉低这个概率。
· Pclass属性,1等舱乘客最后获救的概率会上升,而乘客等级为3会极大地拉低这个概率。
· 有Cabin值会很大程度拉升最后获救概率(这里似乎能看到了一点端倪,事实上从最上面的有无Cabin记录的Survived分布图上看出,即使有Cabin记录的乘客也有一部分遇难了,估计这个属性上我们挖掘还不够)
· Age是一个负相关,意味着在我们的模型里,年龄越小,越有获救的优先权(还得回原数据看看这个是否合理)
· 有一个登船港口S会很大程度拉低获救的概率,另外俩港口压根就没啥作用(这个实际上非常奇怪,因为我们从之前的统计图上并没有看到S港口的获救率非常低,所以也许可以考虑把登船港口这个feature去掉试试)。
· 船票Fare有小幅度的正相关(并不意味着这个feature作用不大,有可能是我们细化的程度还不够,举个例子,说不定我们得对它离散化,再分至各个乘客等级上?)

噢啦,观察完了,我们现在有一些想法了,但是怎么样才知道,哪些优化的方法是promising的呢?

因为test.csv里面并没有Survived这个字段(好吧,这是废话,这明明就是我们要预测的结果),我们无法在这份数据上评定我们算法在该场景下的效果…

而『每做一次调整就make a submission,然后根据结果来判定这次调整的好坏』其实是行不通的…

7.2 交叉验证

我们通常情况下,这么做cross validation:把train.csv分成两部分,一部分用于训练我们需要的模型,另外一部分数据上看我们预测算法的效果。

我们用scikit-learn的cross_validation来帮我们完成小数据集上的这个工作。

先简单看看cross validation情况下的打分

结果是下面酱紫的: 

[0.81564246 0.81005587 0.78651685 0.78651685 0.81355932]

似乎比Kaggle上的结果略高哈,毕竟用的是不是同一份数据集评估的。

等等,既然我们要做交叉验证,那我们干脆先把交叉验证里面的bad case拿出来看看,看看人眼审核,是否能发现什么蛛丝马迹,是我们忽略了哪些信息,使得这些乘客被判定错了。再把bad case上得到的想法和前头系数分析的合在一起,然后逐个试试。

下面我们做数据分割,并且在原始数据集上瞄一眼bad case:

我们判定错误的 bad case 中部分数据如下: 


大家可以自己跑一遍试试,拿到bad cases之后,仔细看看。也会有一些猜测和想法。其中会有一部分可能会印证在系数分析部分的猜测,那这些优化的想法优先级可以放高一些。
现在有了”train_df” 和 “vc_df” 两个数据部分,前者用于训练model,后者用于评定和选择模型。可以开始可劲折腾了。

我们随便列一些可能可以做的优化操作:

· Age属性不使用现在的拟合方式,而是根据名称中的『Mr』『Mrs』『Miss』等的平均值进行填充。
· Age不做成一个连续值属性,而是使用一个步长进行离散化,变成离散的类目feature。
· Cabin再细化一些,对于有记录的Cabin属性,我们将其分为前面的字母部分(我猜是位置和船层之类的信息) 和 后面的数字部分(应该是房间号,有意思的事情是,如果你仔细看看原始数据,你会发现,这个值大的情况下,似乎获救的可能性高一些)。
· Pclass和Sex俩太重要了,我们试着用它们去组出一个组合属性来试试,这也是另外一种程度的细化。
· 单加一个Child字段,Age<=12的,设为1,其余为0(你去看看数据,确实小盆友优先程度很高啊)
· 如果名字里面有『Mrs』,而Parch>1的,我们猜测她可能是一个母亲,应该获救的概率也会提高,因此可以多加一个Mother字段,此种情况下设为1,其余情况下设为0
· 登船港口可以考虑先去掉试试(Q和C本来就没权重,S有点诡异)
· 把堂兄弟/兄妹 和 Parch 还有自己 个数加在一起组一个Family_size字段(考虑到大家族可能对最后的结果有影响)
· Name是一个我们一直没有触碰的属性,我们可以做一些简单的处理,比如说男性中带某些字眼的(‘Capt’, ‘Don’, ‘Major’, ‘Sir’)可以统一到一个Title,女性也一样。

大家接着往下挖掘,可能还可以想到更多可以细挖的部分。我这里先列这些了,然后我们可以使用手头上的”train_df”和”cv_df”开始试验这些feature engineering的tricks是否有效了。

试验的过程比较漫长,也需要有耐心,而且我们经常会面临很尴尬的状况,就是我们灵光一闪,想到一个feature,然后坚信它一定有效,结果试验下来,效果还不如试验之前的结果。恩,需要坚持和耐心,以及不断的挖掘。

我最好的结果是在

『Survived~C(Pclass)+C(Title)+C(Sex)+C(Age_bucket)+C(Cabin_num_bucket)Mother+Fare+Family_Size』下取得的,结果如下(抱歉,之前commit的时候没有截图,于是重新make commission了,截了个图,不是目前我的最高分哈):



7.3 learning curves

有一个很可能发生的问题是,我们不断地做feature engineering,产生的特征越来越多,用这些特征去训练模型,会对我们的训练集拟合得越来越好,同时也可能在逐步丧失泛化能力,从而在待预测的数据上,表现不佳,也就是发生过拟合问题。

从另一个角度上说,如果模型在待预测的数据上表现不佳,除掉上面说的过拟合问题,也有可能是欠拟合问题,也就是说在训练集上,其实拟合的也不是那么好。

额,这个欠拟合过拟合怎么解释呢。这么说吧:

· 过拟合就像是你班那个学数学比较刻板的同学,老师讲过的题目,一字不漏全记下来了,于是老师再出一样的题目,分分钟精确出结果。but数学考试,因为总是碰到新题目,所以成绩不咋地。
· 欠拟合就像是,咳咳,和博主level差不多的差生。连老师讲的练习题也记不住,于是连老师出一样题目复习的周测都做不好,考试更是可想而知了。
而在机器学习的问题上,对于过拟合欠拟合两种情形。我们优化的方式是不同的。
过拟合而言,通常以下策略对结果优化是有用的:
· 做一下feature selection,挑出较好的feature的subset来做training
· 提供更多的数据,从而弥补原始数据的bias问题,学习到的model也会更准确
而对于欠拟合而言,我们通常需要更多的feature,更复杂的模型来提高准确度。

著名的learning curve可以帮我们判定我们的模型现在所处的状态。我们以样本数为横坐标,训练和交叉验证集上的错误率作为纵坐标,两种状态分别如下两张图所示:过拟合(overfitting/high variace),欠拟合(underfitting/high bias)



我们也可以把错误率替换成准确率(得分),得到另一种形式的learning curve(sklearn 里面是这么做的)。

回到我们的问题,我们用scikit-learn里面的learning_curve来帮我们分辨我们模型的状态。举个例子,这里我们一起画一下我们最先得到的baseline model的learning curve。


在实际数据上看,我们得到的learning curve没有理论推导的那么光滑哈,但是可以大致看出来,训练集和交叉验证集上的得分曲线走势还是符合预期的。

目前的曲线看来,我们的model并不处于overfitting的状态(overfitting的表现一般是训练集上得分高,而交叉验证集上要低很多,中间的gap比较大)。因此我们可以再做些feature engineering的工作,添加一些新产出的特征或者组合特征到模型中。


08 模型融合(model ensemble)

啥叫模型融合呢,我们还是举几个例子直观理解一下好了。

大家都看过知识问答的综艺节目中,求助现场观众时候,让观众投票,最高的答案作为自己的答案的形式吧,每个人都有一个判定结果,最后我们相信答案在大多数人手里。

再通俗一点举个例子。你和你班某数学大神关系好,每次作业都『模仿』他的,于是绝大多数情况下,他做对了,你也对了。突然某一天大神脑子犯糊涂,手一抖,写错了一个数,于是…恩,你也只能跟着错了。 

我们再来看看另外一个场景,你和你班5个数学大神关系都很好,每次都把他们作业拿过来,对比一下,再『自己做』,那你想想,如果哪天某大神犯糊涂了,写错了,but另外四个写对了啊,那你肯定相信另外4人的是正确答案吧?

最简单的模型融合大概就是这么个意思,比如分类问题,当我们手头上有一堆在同一份数据集上训练得到的分类器(比如logistic regression,SVMKNN,random forest,神经网络),那我们让他们都分别去做判定,然后对结果做投票统计,取票数最多的结果为最后结果。

bingo,问题就这么完美的解决了。

模型融合可以比较好地缓解,训练过程中产生的过拟合问题,从而对于结果的准确度提升有一定的帮助。

话说回来,回到我们现在的问题。你看,我们现在只讲了logistic regression,如果我们还想用这个融合思想去提高我们的结果,我们该怎么做呢?

既然这个时候模型没得选,那咱们就在数据上动动手脚咯。大家想想,如果模型出现过拟合现在,一定是在我们的训练上出现拟合过度造成的对吧。

那我们干脆就不要用全部的训练集,每次取训练集的一个subset,做训练,这样,我们虽然用的是同一个机器学习算法,但是得到的模型却是不一样的;同时,因为我们没有任何一份子数据集是全的,因此即使出现过拟合,也是在子训练集上出现过拟合,而不是全体数据上,这样做一个融合,可能对最后的结果有一定的帮助。对,这就是常用的Bagging。
我们用scikit-learn里面的Bagging来完成上面的思路,过程非常简单。代码如下:

然后你再Make a submission,恩,发现对结果还是有帮助的。



09 总结
文章稍微有点长,非常感谢各位耐心看到这里。 

总结的部分,我就简短写几段,出现的话,很多在文中有对应的场景,大家有兴趣再回头看看。

对于任何的机器学习问题,不要一上来就追求尽善尽美,先用自己会的算法撸一个baseline的model出来,再进行后续的分析步骤,一步步提高。

在问题的结果过程中: 

* 『对数据的认识太重要了!』 
* 『数据中的特殊点/离群点的分析和处理太重要了!』 
* 『特征工程(feature engineering)太重要了!』 
* 『模型融合(model ensemble)太重要了!』

本文中用机器学习解决问题的过程大概如下图所示: 


顺便说一句,CDA数据分析竞赛正在筹备中,想要参加比赛或者和我们合作的可以后台回复“CDA数据分析竞赛”加入我们。

数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询