作者:丁点helper
来源:丁点帮你
前面,我们详述了各种检验方法的基本逻辑以及实操过程,包括t检验、方差分析、卡方检验、和基于秩次的非参数检验,从今天开始,我们就要进入一个新的主题——相关与回归。
相关与回归,尤其是后者,在卫生或医学统计学中应用的十分广泛。这两种方法都是在探寻两个或两个以上变量之间的关联,或者称“相关关系”。
可是,我们做研究的终极目标并非是为了获得“相关”,而是获得“因果”。
某种疾病病死率的下降与使用新药有关,这里的有关,实际上在暗示,新药的使用,导致了病死率的下降,这里的“导致”就表明产生了因果关系。
相关是比因果更宽泛的概念,两个变量存在因果关系,几乎可以肯定会存在相关关系(不限于线性相关);但反过来,却不能成立,具有相关关系的数据,并不一定存在因果联系。
统计书中举的最简单的例子是“小树的身高和小孩的身高”——小树长、我也长,从数据来看,它们存在非常显著的相关关系。
但是,有何意义吗?并没有。我们并不能从这两个数据表面的相关来推导出小树身高对小孩身高造成何种影响?
是的,无论是简单的单因素假设检验(如两组样本的t检验),还是纳入了多个因素的线性回归分析,本质上,我们是希望获得一个因素对另一个因素的“影响”。
产生影响意味着什么呢?意味着发生了因果关系。
比如有人说“刷抖音影响学习”,把这句话用统计的语言来表达和验证就是:抽取一群学生,随机分配到两组,一组天天刷抖音,另一组不刷,然后比较两组学生的平均成绩。
如果抖音组的成绩低,那我们就可以下结论说:刷抖音影响学习,更准确地说,刷抖音导致学习成绩下降。同样,注意这里的用词,“导致”意味着因果关系。
以上当然是一个不严谨的“随机对照试验”,存在很多漏洞值得讨论。但我们举这个例子的意图只是想让大家明白,如果你想验证“因果关系”,理论上,这或许是唯一准确的办法。
再往深想一想,或许也不应该称为“理论上“唯一准确的办法,而应该称作“具有实现可能”的唯一准确办法。
言外之意,还有不可实现的方法吗?
是的,要做因果推断,最准确的应该是通过构造”反事实“来实现。
什么叫反事实?它是根据英文翻译过来的,叫做counterfactual facts,看第一个单次的词根”counter“就是”反、对抗“的意思。说起来似乎很拗口,但理解起来并不费劲。
仍以上面刷抖音和学习的例子来看,怎样通过构造”反事实“来探究这两者之间的因果关系呢?
很简单,让一个特别喜欢耍抖音的小朋友一直刷,然后记录其期末考试成绩;还是这个小朋友,让它做时光机重新回到学期开始的时候,什么都不变,唯独一点变了——没有抖音了,然后再看这个小朋友期末考试成绩。通过比较他的两次成绩,就能准确地判断出”刷抖音是否影响了他的学习“。
这就是所谓的”反事实“,因为他刷抖音这是个事实,在现实生活中,我们是无法改变这个事实的,所以只能通过在脑海中构建”他不刷抖音“这个反事实。实际上,因果推断的金标准——随机对照试验,就是一种模拟”反事实“的方法。
绕这么大一个圈给大家讲反事实,就是想提醒大家,因果关系推断之难。
别说反事实,就是随机对照试验,对很多研究来讲都是不可能实现的。
我们唯一(或者大部分)能获得就是眼前看到的这个世界发生的一切——所谓的”观察性数据“(Observational data),可我们的目的偏偏是希望从这些”观察性数据“中间获得”因果性推断“。
当我们采用统计方法来探究变量间的关系时,我们应该保持谨慎,因为几乎所有的方法都是在进行”相关关系“的探究,而非”因果关系“,这一点是我在咱们这个系列文章的开头想跟大家讲的。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20